期刊文献+
共找到4,636篇文章
< 1 2 232 >
每页显示 20 50 100
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration
1
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 c/c composites ZrB_(2)-Zrc-Sic Vacuum filtration Reactive melt infiltration Ablation.
下载PDF
Enhanced mechanical and electrical properties of multi-walled carbon nanotubes reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites via high-pressure torsion
2
作者 Zi-xuan WU Pei-fan ZHANG +4 位作者 Xiao-song JIANG Hong-liang SUN Yan-jun LI Pål CHRISTIAN Liu YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期4005-4019,共15页
In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum micr... In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties. 展开更多
关键词 cu/Ti_(3)Sic_(2)/c nanocomposites multi-walled carbon nanotubes high-pressure torsion microstructure MIcROHARDNESS electrical conductivity
下载PDF
Anti-oxidation properties of ZrB_2 modified silicon-based multilayer coating for carbon/carbon composites at high temperatures 被引量:8
3
作者 李贺军 姚西媛 +2 位作者 张雨雷 姚栋嘉 王少龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2094-2099,共6页
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme... To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer. 展开更多
关键词 c/c composites cOATING ZRB2 anti-oxidation properties
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
4
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 c/c composites c/SIc MOSI2 Sic MULTILAYER cOATING OXIDATION
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
5
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber c/c composites flexural destruction crack propagation
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:4
6
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 Sic/c composites compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Fracture mechanism of 2D-C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading
7
作者 曹伟锋 李贺军 +3 位作者 郭领军 张守阳 李克智 邓海亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2141-2146,共6页
Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PL... Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix. 展开更多
关键词 c/c composites PYROcarbon FRAcTURE flexural behavior
下载PDF
Research progress on silicon carbide and its modified coatings in C/SiC composites
8
作者 Wu-bin QI Jia-qi WU +7 位作者 Zhuan LI Peng XIAO Jun-jie DUAN Yang-jie LI Liang PANG Zong-long GAO Jia-min ZHU Yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期3822-3845,共24页
Carbon fiber reinforced silicon carbide ceramic composite(C/SiC)has become a key structural material due to its excellent high temperature resistance,corrosion resistance and oxidation resistance.However,C/SiC composi... Carbon fiber reinforced silicon carbide ceramic composite(C/SiC)has become a key structural material due to its excellent high temperature resistance,corrosion resistance and oxidation resistance.However,C/SiC composites are prone to oxidation under long-term high temperature loading conditions.In this work,the research progress of SiC coating and its modified coating on the surface of C/SiC composite is reviewed.The optimization of these coatings mainly involves two aspects:structure and composition.The focus of structural optimization is to improve the interphase structure by such as SiC nanowires,thereby improving the interfacial bonding strength between the coatings and between the coatings and the substrate.The focus of composition optimization is to improve the performance of the coatings under high temperature loads by rare earth silicates,etc.The modification strategies of various modified coatings are emphatically introduced,which is helpful to guide the preparation of high-performance C/SiC coating materials in the future. 展开更多
关键词 c/Sic composite cOATING coating modification OXIDATION STRENGTH
下载PDF
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
9
作者 毋克凡 张虎 唐桂华 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期48-60,共13页
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ... Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness. 展开更多
关键词 compositeS c/Si ANISOTROPIc
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
10
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si c particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
11
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D c/Sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Ablation Processes for HfC-Coated 2.5D Needle-Punched Composites Used for Aerospace Engines Under Hypersonic Flight Conditions
12
作者 ZHANG Ziyi SHI Zhenyu +2 位作者 NI Jing WANG Jilai ZHANG Chengpeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期645-655,共11页
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla... The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance. 展开更多
关键词 2.5D needle-punched c/Sic composites ablation mechanism arc-heated wind tunnel experiment high enthalpy flow
下载PDF
Effect of Ti-Mo-V composite addition on microstructure andmechanical properties of marine 10Ni5CrMoV steel
13
作者 ZOU Tao DONG Yan-wu +3 位作者 JIANG Zhou-hua WANG Qi WANG Yong PENG Fei 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3628-3645,共18页
The effects of Ti-Mo-V composite addition on the evolution of precipitates in marine 10Ni5CrMoV steel andthe corresponding strength and toughness mechanisms were systematically investigated.Ti-Mo-V composite addition ... The effects of Ti-Mo-V composite addition on the evolution of precipitates in marine 10Ni5CrMoV steel andthe corresponding strength and toughness mechanisms were systematically investigated.Ti-Mo-V composite addition canform the Ti_(x)Mo_(y)V_(z)C carbide with TiC as core and Mo-V as shell in the order of Ti(C)→V→Mo.The yield strength of thespecimens is increased from 815 MPa to 876 MPa due to the nanoscale precipitates enhancing the pinning effect on grainboundaries and dislocations,and the contribution of precipitation and dislocation strengthening is increased.The decrease of ductile-brittle transition temperature from−103 to−116℃is attributed to the decrease in equivalent grainsize and the increase of high-angle grain boundary misorientation,which hinders the initiation and propagation of cracks.When the mass fraction of Ti is 0.05%,the strength and cryogenic toughness can be improved synergistically,which alsoprovides a theoretical basis and experimental reference for exploring the more excellent combination of strength andcryogenic toughness of marine 10Ni5CrMoV steel. 展开更多
关键词 10Ni5crMoV steel Ti-Mo-V composition addition ductile-brittle transition temperature Ti_(x)Mo_(y)V_(z)c mechanical properties
下载PDF
Effects of Preform and Pyrolytic Carbon Structure on Thermophysical Properties of 2D Carbon/Carbon Composites 被引量:8
14
作者 罗瑞盈 程永宏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期112-118,共7页
Four kinds of carbon/carbon (C/C) composites, including the needled carbon fiber felt/the pyrolytic carbon (two different pyrolytic carbon microstructures), the chopped carbon fiber/the resin + pyrolytic carbon (PyrC)... Four kinds of carbon/carbon (C/C) composites, including the needled carbon fiber felt/the pyrolytic carbon (two different pyrolytic carbon microstructures), the chopped carbon fiber/the resin + pyrolytic carbon (PyrC), and the carbon cloth/PyrC, named as the composites 1#, 4#, 2#, and 3#, are prepared respectively. Effects of the preform and pyrolytic carbon structure on the thermophysical properties of 2D C/C composites are studied. The C/C composites possess low coefficient of thermal expansion (CTE). In a range of some temperatures, the negative expansion emerges in x-y direction for four C/C composites. From 0 to 900℃, the CTE is small and almost linear with the temperatures. The C/C composites have high thermal conductivities (TCs). As a function of temperature, TCs of the C/C composites are varied with the structures of preform and pyrc as well as the direction of heat transfer. In x-y and z direction, TCs differ greatly and that in x-y direction (25.6-174 W/m·K) is several times larger than that in z direction(3.5-50 W/m·K). 展开更多
关键词 carbon/carbon(c/c)composite pyrolytic carbon thermal expansion thermal conductivity
下载PDF
Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes 被引量:11
15
作者 Le Hu Bin Luo +3 位作者 Chenghao Wu Pengfei Hu Lianzhou Wang Haijiao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期124-130,共7页
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structure... The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields. 展开更多
关键词 Si/c compositeS Yolk-shell Multiple SI nanoparticles Double carbon SHELLS Energy storage
下载PDF
W-Mo-Si/SiC Oxidation Protective Coating for Carbon/Carbon Composites 被引量:3
16
作者 Dangshe HOU Kezhi LI Hejun LI Qiangang FU Jian WEI Yulei ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期559-562,共4页
A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)res... A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)results show that the coating obtained by the first step pack cementation was a thin inner buffer layer of SiC with some cracks and pores, and a new phase of (WxMo1-x)Si2 appeared after the second step pack cementation. Oxidation test shows that, after oxidation in air at 1773 K for 175 h and thermal cycling between 1773 K and room temperature for 18 times, the weight loss of the W-Mo-Si/SiC coated C/C composites was only 2.06%. The oxidation protective failure of the W-Mo-Si/SiC coating was attributed to the formation of some penetrable cracks in the coating. 展开更多
关键词 c/c composites cOATING MIcROSTRUcTURE OXIDATION
下载PDF
Mechanical properties of 3D carbon/carbon composites by nanoindentation technique 被引量:5
17
作者 WEI Li-ming ZHANG Yue +2 位作者 XU Cheng-hai QI Fei MENG Song-he 《Journal of Central South University》 SCIE EI CAS 2012年第1期36-40,共5页
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro... Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions. 展开更多
关键词 c/c composites mechanical properties NANOINDENTATION MIcROSTRUcTURE
下载PDF
Non‑Magnetic Bimetallic MOF‑Derived Porous Carbon‑Wrapped TiO2/ ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption 被引量:18
18
作者 Jing Qiao Xue Zhang +7 位作者 Chang Liu Longfei Lyu Yunfei Yang Zhou Wang Lili Wu Wei Liu Fenglong Wang Jiurong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期45-60,共16页
Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre... Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications. 展开更多
关键词 Bimetallic metal-organic framework PcN-415 MOF derivatives TiO2/ZrTiO4/c composites Electromagnetic wave absorption
下载PDF
Effects of carrier gas on densification of porous carbon-carbon composites during chemical vapor infiltration 被引量:3
19
作者 汤中华 邹志强 熊杰 《Journal of Central South University of Technology》 2003年第1期7-12,共6页
The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the r... The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon. 展开更多
关键词 c/c compositeS cARRIER gas chemical vapor INFILTRATION DENSIFIcATION
下载PDF
The effect of modification of matrix on densification efficiency of pitch based carbon composites 被引量:3
20
作者 MOHAMMAD Mahdi Sotoudehnia ALI Khalife Soltani +1 位作者 AMIR Maghsouipour FATOLLAH Moztarzadeh 《Journal of Coal Science & Engineering(China)》 2010年第4期408-414,共7页
Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in... Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in terms of carbon yield, density, viscosity,and fractionation with solvents, as well as by thermal analysis methods.The suitability ofthese commercially available matrices for densification of 3 dimensional carbon-carboncomposites was examined.The theoretical results compared with experimental results.The highest density after impregnation was obtained using one of the coal tar pitches.Thepredicted results are in reasonable agreement with experiment data.The significance ofthis research is that a special heat treatment regime was conducted.The effects of modificationtemperature on the densification efficiency of composites were investigated andthen structure and characteristics of the composites were determined by scanning electronmicroscopy (SEM), Transmission electron microscopy (TEM) and X-Ray Diffraction (XRD). 展开更多
关键词 PITcH carbonIZATION IMPREGNATION c/c composites
下载PDF
上一页 1 2 232 下一页 到第
使用帮助 返回顶部