NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diamete...NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage.展开更多
Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbo...Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbon-based(nano)materials and as substrates or templates to produce carbon-containing(nano)composites. Being greener and more affordable, microbe-derived carbons(MDCs) offer good potential for energy applications. In this review, we describe the unique advantages of MDCs and outline the common procedures to prepare them. We also extensively discuss the energy applications of MDCs including their use as electrodes in supercapacitors and lithium-ion batteries, and as electrocatalysts for processes such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions which are essential for fuel cell and water electrochemical splitting cells. Based on the literature trend and our group's expertise, we propose potential research directions for developing new types of MDCs. This review, therefore, provides the state-of-the-art of a new energy chemistry concept. We expect to stimulate future research on the applications of MDCs that may address energy and environmental challenges that our societies are facing.展开更多
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo...The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.展开更多
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density o...Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs.展开更多
Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method...Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g.展开更多
Lithium-fluorinated carbon(Li-CFx)batteries have become one of the most widely applied power sources for high energy density applications because of the advantages provided by the CFx cathode.Moreover,the large gap be...Lithium-fluorinated carbon(Li-CFx)batteries have become one of the most widely applied power sources for high energy density applications because of the advantages provided by the CFx cathode.Moreover,the large gap between the practical and theoretical potentials alongside the stoichiometric limit of commercial graphite fluorides indicates the potential for further energy improvement.Herein,monolayer fluorinated graphene nanoribbons(F-GNRs)were fabricated by unzipping single-walled carbon nanotubes(SWCNTs)using pure F2 gas at high temperature,which delivered an unprecedented energy density of 2738.45 W h kg^(−1)due to the combined effect of a high fluorination degree and discharge plateau,realized by the abundant edges and destroyed periodic structure,respectively.Furthermore,at a high fluorination temperature,the theoretical calculation confirmed a zigzag pathway of fluorine atoms that were adsorbed outside of the SWCNTs and hence initiated the spontaneous process of unzipping SWCNTs to form the monolayer F-GNRs.The controllable fluorination of SWCNTs provided a feasible approach for preparing CFx compounds for different applications,especially for ultrahigh-energy-density cathodes.展开更多
Lithium carbon fluorides(Li/CFx)primary batteries are of highly interests due to their high specific energy and power densities.The shelf life is one of the major concerns when they are used as backup power,emergency ...Lithium carbon fluorides(Li/CFx)primary batteries are of highly interests due to their high specific energy and power densities.The shelf life is one of the major concerns when they are used as backup power,emergency power and storage power in landers,manned spacecraft or military applications.In this work,real-time storage tests are carried out for both energy-type and power-type Li/CFx pouch batteries at 25℃.Accelerated storage tests are performed at elevated temperature of 55℃.The electrochemical tests are conducted throughout the aging period of 0-365 days for various batteries to study the effects of temperature on both type of batteries.The observed electrochemical behaviors are explained with the evidences from multiple characterizations for post-tested samples.展开更多
A facile synthesis of the hierarchically porous cathode with Mo2C nanoparticles through the electrospinning technique and heat treatment is proposed. The carbonization temperature of the precursors is the key factor f...A facile synthesis of the hierarchically porous cathode with Mo2C nanoparticles through the electrospinning technique and heat treatment is proposed. The carbonization temperature of the precursors is the key factor for the formation of M02C nanoparticles on the carbon nanofibers (MCNFs). Compared with the Mo2N nanoparticles embedded into N-doped carbon nanofibers film (MNNFs) and N-doped carbon nanofibers film (NFs), the battery with MCNFs cathode is capable of operation with a high-capacity (10,509 mAhg-1 at 100 mAg-l), a much reduced discharge-charge voltage gap, and a long-term life (124 cycles at 200 mA g-1 with a specific capacity limit of 500 mAh g -1). These excellent performances are derived from the synergy of the following advantageous factors: (1) the hierarchically self-standing and binder-free structure of MCNFs could ensure the high diffusion flux of Li+ and O2 as well as avoid clogging of the discharge product, bulk Li202; (2) the well dispersed M02C nanoparticles not only afford rich active sites, but also facilitate the electronic transfer for catalysis.展开更多
Nb_2O_5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb_2O_5/C based electrode exhibits high rate performance and remarkable cycling ability,showing a high and...Nb_2O_5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb_2O_5/C based electrode exhibits high rate performance and remarkable cycling ability,showing a high and stable specific capacity of ~380mAhg^(-1) at the current density of 50 mAg^(-1)(much higher than the theoretical capacity of Nb_2O_5).Further more,at a current density of 500mAg^(-1),the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g^(-1) after 100 cycles.These results suggest the Nb_2O_5/C nanocomposite is a high performance anode material for lithium-ion batteries.展开更多
Polypyrrole and sulfur derived hollow carbon nanofibers co-doped with nitrogen/sulfur are synthesized and applied as the anode for Na-ion batteries(NIBs). Successful doping of hollow carbon nanofiber with nitrogen and...Polypyrrole and sulfur derived hollow carbon nanofibers co-doped with nitrogen/sulfur are synthesized and applied as the anode for Na-ion batteries(NIBs). Successful doping of hollow carbon nanofiber with nitrogen and sulfur is confirmed by X-ray photoelectron spectroscopy, scanning and tunneling electron microscopy. Further analysis certifies that sulfur doping has a significant impact in improving the elecctrochemical performance of the carbon-based anodes for NIBs. The obtained N-doped hollow carbon nanofiber and N/S co-doped hollow carbon nanofiber exhibit similar morphologies but different electrochemical behavior. As expected, the N/S co-doped hollow carbon nanofiber anode exhibits enhanced electrochemical performance, including high specific capacity, outstanding long-term stability, and good rate stability.展开更多
In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur com...In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur composite achieved a sulfur content of about 67 wt%.The C/S composite as the cathode of lithium-sulfur batteries exhibited a discharge capacity of 1410 mAh/g and good capacity retention of912 mAh/g at 0.1C.These outstanding results were attributed to the synergy effect of microporous carbon and natural doping nitrogen atoms.We believe that the facile approach for the synthesis of nitrogen-doped multiporous carbon from the low-cost and sustainable biological resources will not only be applied in lithium-sulfur batteries,but also in other electrode materials.展开更多
A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework an...A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g^-1 at 0.5 A·g^-1 and good rate capacity with a retained capacity of 479 mAh·g^-1 at 2.0 A·g^-1(73% of the capacity at 0.2 A·g^-1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g^-1 at 0.5 A·g^-1 is achieved with a retained capacity of 538 mAh·g^-1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery.展开更多
Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and elect...Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g^(–1)) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g^(–1) has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.展开更多
As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon ...As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices.展开更多
MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-dop...MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS_2.When evaluated as anode material for lithium-ion batteries,the MoS_2@C exhibit enhanced electrochemical performances compared with pure MoS_2 nanosheets,including high capacity(1305.5 mAhg^(-1) at lOOmAg^(-1)),excellent rate capability(438.4mAhg^(-1) at 1000mAg^(-1)).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS_2@C.展开更多
Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increas...Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.展开更多
Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphol...Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.展开更多
As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hyd...As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries.展开更多
Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batter...Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batteries).Besides, Li–S and Li–Se batteries are low cost and environmental benign. However, the commercial applications of Li–S and Li–Se batteries are hindered by the dissolution and shuttle phenomena of polysulfide(polyselenium), the low conductivity of S(Se), etc. To overcome these drawbacks, scientists have come up with various methods, such as optimizing the electrolyte, synthesizing composite electrode of S/polymer, S/carbon, S/metal organic framework(MOF) and constructing novelty structure of battery.In this review, we present a systematic introduction about the recent progress of Li–S and Li–Se batteries, especially in the area of electrode materials, both of cathode material and anode material for Li–S and Li–Se batteries. In addition, other methods to lead a high-performance Li–S and Li–Se batteries are also briefly summarized, such as constructing novelty battery structure, adopting proper charge–discharge conditions, heteroatom doping into sulfur molecules, using different kinds of electrolytes and binders. In the end of the review, the developed directions of Li–S and Li–Se batteries are also pointed out. We believe that combining proper porous carbon matrix and heteroatom doping may further improve the electrochemical performance of Li–S and Li–Se batteries. We also believe that Li–S and Li–Se batteries will get more exciting results and have promising future by the effort of battery community.展开更多
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with ...Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.展开更多
基金the National Key Basic Research Program of China (2015CB351903)the National Natural Science Foundation of China (51402282, 51373160,21474095, 21476104, 21373197)+1 种基金the Fundamental Research Funds for the Central Universities (WK3430000003)the 100 Talents Program of the Chinese Academy of Sciences
文摘NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage.
基金supported by the Ministry of Education, Singapore (2013-T1-002132)the iFood program of Nanyang Technological UniversityThe University of Sydney for financial support
文摘Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbon-based(nano)materials and as substrates or templates to produce carbon-containing(nano)composites. Being greener and more affordable, microbe-derived carbons(MDCs) offer good potential for energy applications. In this review, we describe the unique advantages of MDCs and outline the common procedures to prepare them. We also extensively discuss the energy applications of MDCs including their use as electrodes in supercapacitors and lithium-ion batteries, and as electrocatalysts for processes such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions which are essential for fuel cell and water electrochemical splitting cells. Based on the literature trend and our group's expertise, we propose potential research directions for developing new types of MDCs. This review, therefore, provides the state-of-the-art of a new energy chemistry concept. We expect to stimulate future research on the applications of MDCs that may address energy and environmental challenges that our societies are facing.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China(21776019)
文摘The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.
基金supported by the National Nature Science Foundations of China(Grant No.21673263,21573265)the Independent Innovation Plan Foundations of Qingdao City of China(Grant No.16-5-1-42-jch)the western Young Scholars Foundations of Chinese Academy of Sciences
文摘Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs.
基金Funded by the National Natural Science Foundation of China(No.51372136)Shenzhen Basic Research Project(No.CYJ20130402145002372)
文摘Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g.
基金financially supported by the National Key R&D Program of China (2016YFA0202302)the State Key Program of National Natural Science Foundation of China (51633007)the National Natural Science Foundation of China (51773147, 51803149 and 51973151)
文摘Lithium-fluorinated carbon(Li-CFx)batteries have become one of the most widely applied power sources for high energy density applications because of the advantages provided by the CFx cathode.Moreover,the large gap between the practical and theoretical potentials alongside the stoichiometric limit of commercial graphite fluorides indicates the potential for further energy improvement.Herein,monolayer fluorinated graphene nanoribbons(F-GNRs)were fabricated by unzipping single-walled carbon nanotubes(SWCNTs)using pure F2 gas at high temperature,which delivered an unprecedented energy density of 2738.45 W h kg^(−1)due to the combined effect of a high fluorination degree and discharge plateau,realized by the abundant edges and destroyed periodic structure,respectively.Furthermore,at a high fluorination temperature,the theoretical calculation confirmed a zigzag pathway of fluorine atoms that were adsorbed outside of the SWCNTs and hence initiated the spontaneous process of unzipping SWCNTs to form the monolayer F-GNRs.The controllable fluorination of SWCNTs provided a feasible approach for preparing CFx compounds for different applications,especially for ultrahigh-energy-density cathodes.
基金This work was supported by Governmental Program(050502).
文摘Lithium carbon fluorides(Li/CFx)primary batteries are of highly interests due to their high specific energy and power densities.The shelf life is one of the major concerns when they are used as backup power,emergency power and storage power in landers,manned spacecraft or military applications.In this work,real-time storage tests are carried out for both energy-type and power-type Li/CFx pouch batteries at 25℃.Accelerated storage tests are performed at elevated temperature of 55℃.The electrochemical tests are conducted throughout the aging period of 0-365 days for various batteries to study the effects of temperature on both type of batteries.The observed electrochemical behaviors are explained with the evidences from multiple characterizations for post-tested samples.
基金supported by the National Key Research and Development Program of China(2017YFA0206704 and 2016YFB0100103)the National Basic Research Program of China(2014CB932300)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010404)Technology and Industry for National Defence of China(JCKY2016130B010)the National Natural Science Foundation of China(51771177,21422108,51472209,and 51472232)Jilin Province Science and Technology Development Program(20160101289JC)
文摘A facile synthesis of the hierarchically porous cathode with Mo2C nanoparticles through the electrospinning technique and heat treatment is proposed. The carbonization temperature of the precursors is the key factor for the formation of M02C nanoparticles on the carbon nanofibers (MCNFs). Compared with the Mo2N nanoparticles embedded into N-doped carbon nanofibers film (MNNFs) and N-doped carbon nanofibers film (NFs), the battery with MCNFs cathode is capable of operation with a high-capacity (10,509 mAhg-1 at 100 mAg-l), a much reduced discharge-charge voltage gap, and a long-term life (124 cycles at 200 mA g-1 with a specific capacity limit of 500 mAh g -1). These excellent performances are derived from the synergy of the following advantageous factors: (1) the hierarchically self-standing and binder-free structure of MCNFs could ensure the high diffusion flux of Li+ and O2 as well as avoid clogging of the discharge product, bulk Li202; (2) the well dispersed M02C nanoparticles not only afford rich active sites, but also facilitate the electronic transfer for catalysis.
基金supported by the National Natural Science Foundation of China(Nos.51402103 and 51302079)
文摘Nb_2O_5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb_2O_5/C based electrode exhibits high rate performance and remarkable cycling ability,showing a high and stable specific capacity of ~380mAhg^(-1) at the current density of 50 mAg^(-1)(much higher than the theoretical capacity of Nb_2O_5).Further more,at a current density of 500mAg^(-1),the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g^(-1) after 100 cycles.These results suggest the Nb_2O_5/C nanocomposite is a high performance anode material for lithium-ion batteries.
基金supported by the National Natural Science Foundation of China (51374255 and 51302323)Program for New Century Excellent Talents in University (NCET-13-0594)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (201301621200)the Natural Science Foundation of Hunan Province, China (14JJ3018)the Exploration and Innovation Foundation of CSU for Postgraduate (502200568)
文摘Polypyrrole and sulfur derived hollow carbon nanofibers co-doped with nitrogen/sulfur are synthesized and applied as the anode for Na-ion batteries(NIBs). Successful doping of hollow carbon nanofiber with nitrogen and sulfur is confirmed by X-ray photoelectron spectroscopy, scanning and tunneling electron microscopy. Further analysis certifies that sulfur doping has a significant impact in improving the elecctrochemical performance of the carbon-based anodes for NIBs. The obtained N-doped hollow carbon nanofiber and N/S co-doped hollow carbon nanofiber exhibit similar morphologies but different electrochemical behavior. As expected, the N/S co-doped hollow carbon nanofiber anode exhibits enhanced electrochemical performance, including high specific capacity, outstanding long-term stability, and good rate stability.
基金the National Natural Science Foundation of China(Nos.61371021,61527818)Shanghai Municipal Education Commission(Peak Discipline Construction Program)Shanghai Education Commission Innovation Project(No.14YZ016)
文摘In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur composite achieved a sulfur content of about 67 wt%.The C/S composite as the cathode of lithium-sulfur batteries exhibited a discharge capacity of 1410 mAh/g and good capacity retention of912 mAh/g at 0.1C.These outstanding results were attributed to the synergy effect of microporous carbon and natural doping nitrogen atoms.We believe that the facile approach for the synthesis of nitrogen-doped multiporous carbon from the low-cost and sustainable biological resources will not only be applied in lithium-sulfur batteries,but also in other electrode materials.
基金financially supported by the National Basic Research Program of China(No.2014CB932400)the National Science Foundation of China(Nos.21406161 and 51602220)
文摘A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g^-1 at 0.5 A·g^-1 and good rate capacity with a retained capacity of 479 mAh·g^-1 at 2.0 A·g^-1(73% of the capacity at 0.2 A·g^-1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g^-1 at 0.5 A·g^-1 is achieved with a retained capacity of 538 mAh·g^-1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery.
基金supported by the Chinese Scholarship Council (CSC), Opening Fund of State Key Laboratory of Nonlinear Mechanicsthe “A Green Deal in Energy Materials” (ADEM) grant funded by Dutch Ministry of Economic Affairs and ADEM industrial partners
文摘Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g^(–1)) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g^(–1) has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.
基金supported by the National Natural Science Foundation of China(Nos.21634003,21604012)
文摘As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices.
基金supported by the National Natural Science Foundation of China(Nos.51272113,51272115,51672146)A Project of Shandong Province Higher Educational Science and Technology Program(Nos.J13LA10,J14LA15,J15LA12)Development Program in Science and Technology of Qingdao(No.15-9-1-65-jch)
文摘MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS_2.When evaluated as anode material for lithium-ion batteries,the MoS_2@C exhibit enhanced electrochemical performances compared with pure MoS_2 nanosheets,including high capacity(1305.5 mAhg^(-1) at lOOmAg^(-1)),excellent rate capability(438.4mAhg^(-1) at 1000mAg^(-1)).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS_2@C.
基金supported by the Science and Technology Program of State Grid Corporation of Chinathe National Thousand Talents Program of China
文摘Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.
基金supported by the National Natural Science Foundation of China (21571073, 51302099, 51472097)the Ministry of Science and Technology of China (2015CB932600)+2 种基金the Hubei Provincial Natural Science Foundation (2016CFA031)the Program for Huazhong University of Science and Technology (HUST) Interdisciplinary Innovation Team (2015ZDTD038)the Fundamental Research Funds for the Central University (2017KFKJXX007)
文摘Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.
基金supported by the National Natural Science Foundation of China (Grant No. 51472083)
文摘As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.21373195 and 51622210)the Fundamental Research Funds for the Central Universities(No.WK3430000004)
文摘Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batteries).Besides, Li–S and Li–Se batteries are low cost and environmental benign. However, the commercial applications of Li–S and Li–Se batteries are hindered by the dissolution and shuttle phenomena of polysulfide(polyselenium), the low conductivity of S(Se), etc. To overcome these drawbacks, scientists have come up with various methods, such as optimizing the electrolyte, synthesizing composite electrode of S/polymer, S/carbon, S/metal organic framework(MOF) and constructing novelty structure of battery.In this review, we present a systematic introduction about the recent progress of Li–S and Li–Se batteries, especially in the area of electrode materials, both of cathode material and anode material for Li–S and Li–Se batteries. In addition, other methods to lead a high-performance Li–S and Li–Se batteries are also briefly summarized, such as constructing novelty battery structure, adopting proper charge–discharge conditions, heteroatom doping into sulfur molecules, using different kinds of electrolytes and binders. In the end of the review, the developed directions of Li–S and Li–Se batteries are also pointed out. We believe that combining proper porous carbon matrix and heteroatom doping may further improve the electrochemical performance of Li–S and Li–Se batteries. We also believe that Li–S and Li–Se batteries will get more exciting results and have promising future by the effort of battery community.
基金the Program for the NSFC (Nos. 51302325, 51201115, 51471121)New Century Excellent Talents in University (No. NCET-12-0553)+4 种基金Program for Shenghua Overseas Talent (No. 1681-7607030005) from Central South UniversityHubei Provincial Natural Science Foundation (No. 2014CFB261)the partial financial support from the Open-End Fund for the Valuable and Precision Instruments of Central South University (No. CSUZC2014032)Fundamental Research Funds for the Central Universities (No. 2042015kf0184)Wuhan University
文摘Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.