期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries 被引量:1
1
作者 Ajuan Hu Song Jin +2 位作者 Zhenzhen Du Hongchang Jin Hengxing Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期203-208,共6页
NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diamete... NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage. 展开更多
关键词 NS codoped carbon Crab shell template Lithium ion batteries Sodium ion batteries
下载PDF
Microbe-derived carbon materials for electrical energy storage and conversion
2
作者 Li Wei H.Enis Karahan +5 位作者 Shengli Zhai Yang Yuan Qihui Qian Kunli Goh Andrew Keong Ng Yuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期189-196,共8页
Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbo... Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbon-based(nano)materials and as substrates or templates to produce carbon-containing(nano)composites. Being greener and more affordable, microbe-derived carbons(MDCs) offer good potential for energy applications. In this review, we describe the unique advantages of MDCs and outline the common procedures to prepare them. We also extensively discuss the energy applications of MDCs including their use as electrodes in supercapacitors and lithium-ion batteries, and as electrocatalysts for processes such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions which are essential for fuel cell and water electrochemical splitting cells. Based on the literature trend and our group's expertise, we propose potential research directions for developing new types of MDCs. This review, therefore, provides the state-of-the-art of a new energy chemistry concept. We expect to stimulate future research on the applications of MDCs that may address energy and environmental challenges that our societies are facing. 展开更多
关键词 Microbe carbon materials Supercapacitor Lithium-ion battery Oxygen reduction reaction Hydrogen evolution reaction
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
3
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 Nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
The roles of graphene in advanced Li-ion hybrid supercapacitors 被引量:2
4
作者 Junwei Lang Xu Zhang +3 位作者 Bao Liu RutaoWang Jiangtao Chen Xingbin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期43-56,共14页
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density o... Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs. 展开更多
关键词 Graphene Li-ion hybrid supercapacitors Supercapacitor Lithium ion batteries carbon materials Metal oxide Naoocomposites
下载PDF
Synthesis and Properties of Li_2MnSiO_4/C Cathode Materials for Li-ion Batteries 被引量:2
5
作者 王燕超 赵世玺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期945-949,共5页
Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method... Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g. 展开更多
关键词 Li-ion batteries cathode Li_2MnSiO_4 carbon coating
下载PDF
Fluorinated graphene nanoribbons from unzipped single-walled carbon nanotubes for ultrahigh energy density lithium-fluorinated carbon batteries 被引量:3
6
作者 Cong Peng Lingchen Kong +4 位作者 Yu Li Haoyu Fu Lidong Sun Yiyu Feng Wei Feng 《Science China Materials》 SCIE EI CAS CSCD 2021年第6期1367-1377,共11页
Lithium-fluorinated carbon(Li-CFx)batteries have become one of the most widely applied power sources for high energy density applications because of the advantages provided by the CFx cathode.Moreover,the large gap be... Lithium-fluorinated carbon(Li-CFx)batteries have become one of the most widely applied power sources for high energy density applications because of the advantages provided by the CFx cathode.Moreover,the large gap between the practical and theoretical potentials alongside the stoichiometric limit of commercial graphite fluorides indicates the potential for further energy improvement.Herein,monolayer fluorinated graphene nanoribbons(F-GNRs)were fabricated by unzipping single-walled carbon nanotubes(SWCNTs)using pure F2 gas at high temperature,which delivered an unprecedented energy density of 2738.45 W h kg^(−1)due to the combined effect of a high fluorination degree and discharge plateau,realized by the abundant edges and destroyed periodic structure,respectively.Furthermore,at a high fluorination temperature,the theoretical calculation confirmed a zigzag pathway of fluorine atoms that were adsorbed outside of the SWCNTs and hence initiated the spontaneous process of unzipping SWCNTs to form the monolayer F-GNRs.The controllable fluorination of SWCNTs provided a feasible approach for preparing CFx compounds for different applications,especially for ultrahigh-energy-density cathodes. 展开更多
关键词 fluorinated graphene nanoribbons unzipped singlewalled carbon nanotubes ultrahigh energy density lithiumfluorinated carbon batteries
原文传递
Analysis of electrochemical performance of lithium carbon fluorides primary batteries after storage 被引量:2
7
作者 Wen Liu Tingfang Yan +5 位作者 Rui Guo Guoju Dang Yong Li Haijuan Pei Qibin Yan Jingying Xie 《Journal of Materiomics》 SCIE EI 2021年第6期1225-1232,共8页
Lithium carbon fluorides(Li/CFx)primary batteries are of highly interests due to their high specific energy and power densities.The shelf life is one of the major concerns when they are used as backup power,emergency ... Lithium carbon fluorides(Li/CFx)primary batteries are of highly interests due to their high specific energy and power densities.The shelf life is one of the major concerns when they are used as backup power,emergency power and storage power in landers,manned spacecraft or military applications.In this work,real-time storage tests are carried out for both energy-type and power-type Li/CFx pouch batteries at 25℃.Accelerated storage tests are performed at elevated temperature of 55℃.The electrochemical tests are conducted throughout the aging period of 0-365 days for various batteries to study the effects of temperature on both type of batteries.The observed electrochemical behaviors are explained with the evidences from multiple characterizations for post-tested samples. 展开更多
关键词 Lithium carbon fluorides batteries Real-time life Accelerated tests Energy loss
原文传递
Decorating carbon nanofibers with Mo_2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O_2 batteries 被引量:5
8
作者 Zhen-Dong Yang Zhi-Wen Chang +2 位作者 Qi Zhang Keke Huang Xin-Bo Zhang 《Science Bulletin》 SCIE EI CSCD 2018年第7期433-440,共8页
A facile synthesis of the hierarchically porous cathode with Mo2C nanoparticles through the electrospinning technique and heat treatment is proposed. The carbonization temperature of the precursors is the key factor f... A facile synthesis of the hierarchically porous cathode with Mo2C nanoparticles through the electrospinning technique and heat treatment is proposed. The carbonization temperature of the precursors is the key factor for the formation of M02C nanoparticles on the carbon nanofibers (MCNFs). Compared with the Mo2N nanoparticles embedded into N-doped carbon nanofibers film (MNNFs) and N-doped carbon nanofibers film (NFs), the battery with MCNFs cathode is capable of operation with a high-capacity (10,509 mAhg-1 at 100 mAg-l), a much reduced discharge-charge voltage gap, and a long-term life (124 cycles at 200 mA g-1 with a specific capacity limit of 500 mAh g -1). These excellent performances are derived from the synergy of the following advantageous factors: (1) the hierarchically self-standing and binder-free structure of MCNFs could ensure the high diffusion flux of Li+ and O2 as well as avoid clogging of the discharge product, bulk Li202; (2) the well dispersed M02C nanoparticles not only afford rich active sites, but also facilitate the electronic transfer for catalysis. 展开更多
关键词 Li-O2 battery carbon nanofibers film Mo2C nanoparticles Electrospinning Binder-free
原文传递
Fabrication of Nb2O5/C nanocomposites as a high performance anode for lithium ion battery 被引量:3
9
作者 Gan-Ying Zeng Hao Wang +3 位作者 Jing Guo Li-Mei Cha Yu-Hai Dou Jian-Min Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期755-758,共4页
Nb_2O_5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb_2O_5/C based electrode exhibits high rate performance and remarkable cycling ability,showing a high and... Nb_2O_5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb_2O_5/C based electrode exhibits high rate performance and remarkable cycling ability,showing a high and stable specific capacity of ~380mAhg^(-1) at the current density of 50 mAg^(-1)(much higher than the theoretical capacity of Nb_2O_5).Further more,at a current density of 500mAg^(-1),the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g^(-1) after 100 cycles.These results suggest the Nb_2O_5/C nanocomposite is a high performance anode material for lithium-ion batteries. 展开更多
关键词 N2O5 carbon Composite Anode Lithium-ion battery
原文传递
Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries 被引量:6
10
作者 Zhigao Luo Sainan Liu +3 位作者 Yangshen Cai Shi Li Anqiang Pan Shuquan Liang 《Science Bulletin》 SCIE EI CSCD 2018年第2期126-132,共7页
Polypyrrole and sulfur derived hollow carbon nanofibers co-doped with nitrogen/sulfur are synthesized and applied as the anode for Na-ion batteries(NIBs). Successful doping of hollow carbon nanofiber with nitrogen and... Polypyrrole and sulfur derived hollow carbon nanofibers co-doped with nitrogen/sulfur are synthesized and applied as the anode for Na-ion batteries(NIBs). Successful doping of hollow carbon nanofiber with nitrogen and sulfur is confirmed by X-ray photoelectron spectroscopy, scanning and tunneling electron microscopy. Further analysis certifies that sulfur doping has a significant impact in improving the elecctrochemical performance of the carbon-based anodes for NIBs. The obtained N-doped hollow carbon nanofiber and N/S co-doped hollow carbon nanofiber exhibit similar morphologies but different electrochemical behavior. As expected, the N/S co-doped hollow carbon nanofiber anode exhibits enhanced electrochemical performance, including high specific capacity, outstanding long-term stability, and good rate stability. 展开更多
关键词 Hollow carbon nanofibersNitrogen/sulfur co-doping Anode Sodium ion batteries
原文传递
Natural nitrogen-doped multiporous carbon from biological cells as sulfur stabilizers for lithium-sulfur batteries 被引量:1
11
作者 Yan-Ping Xie Hong-Wei Cheng +5 位作者 Wei Chai Hong Yue Xuan Zhang Jian-Hui Fang Hong-Bin Zhao Jia-Qiang Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期738-742,共5页
In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur com... In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur composite achieved a sulfur content of about 67 wt%.The C/S composite as the cathode of lithium-sulfur batteries exhibited a discharge capacity of 1410 mAh/g and good capacity retention of912 mAh/g at 0.1C.These outstanding results were attributed to the synergy effect of microporous carbon and natural doping nitrogen atoms.We believe that the facile approach for the synthesis of nitrogen-doped multiporous carbon from the low-cost and sustainable biological resources will not only be applied in lithium-sulfur batteries,but also in other electrode materials. 展开更多
关键词 Biological cell Multiporous carbon Nitrogen-doped Lithium-sulfur batteries
原文传递
Improved performance of Li-Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction 被引量:2
12
作者 Jing Li Chen Zhang +3 位作者 Cheng-Jun Wu Ying Tao Lei Zhang Quan-Hong Yang 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期425-433,共9页
A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework an... A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g^-1 at 0.5 A·g^-1 and good rate capacity with a retained capacity of 479 mAh·g^-1 at 2.0 A·g^-1(73% of the capacity at 0.2 A·g^-1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g^-1 at 0.5 A·g^-1 is achieved with a retained capacity of 538 mAh·g^-1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery. 展开更多
关键词 Graphene carbon nanotube Cathode material Li–Se battery
原文传递
The electrochemical performance of super P carbon black in reversible Li/Na ion uptake 被引量:1
13
作者 Bo Peng Yaolin Xu +2 位作者 Xiaoqun Wang Xinghua Shi Fokko M. Mulder 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第6期53-60,共8页
Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and elect... Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g^(–1)) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g^(–1) has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge. 展开更多
关键词 super P carbon black Li ion batteries Na ion batteries
原文传递
The applications of carbon nanomaterials in fiber-shaped energy storage devices 被引量:1
14
作者 Jingxia Wu Yang Hong Bingjie Wang 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期48-56,共9页
As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon ... As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. 展开更多
关键词 carbon nanotube graphene fiber-shaped supercapacitor lithium ion battery
原文传递
MoS2 nanosheet arrays supported on hierarchical porous carbon with enhanced lithium storage properties
15
作者 Zhi-Yan Guo Yang Zhong +2 位作者 Yu Liu Chang-Ming Mao Gui-Cun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期743-747,共5页
MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-dop... MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS_2.When evaluated as anode material for lithium-ion batteries,the MoS_2@C exhibit enhanced electrochemical performances compared with pure MoS_2 nanosheets,including high capacity(1305.5 mAhg^(-1) at lOOmAg^(-1)),excellent rate capability(438.4mAhg^(-1) at 1000mAg^(-1)).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS_2@C. 展开更多
关键词 Molybdenum disulfide Hydrothermal Nitrogen-doped porous carbon Anode material Lithium-ion batteries
原文传递
Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries 被引量:9
16
作者 Feng Wang Chen Hu +5 位作者 Min Zhou Kangli Wang Jiali Lian Jie Yan Shijie Cheng Kai Jiang 《Science Bulletin》 SCIE EI CAS CSCD 2016年第6期451-458,共8页
Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increas... Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications. 展开更多
关键词 Lead–carbon battery ULTRAbattery Hydrogen evolution reaction Hydrogen inhibition
原文传递
One-pot synthesis of Li_3VO_4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries 被引量:5
17
作者 Ruihuan Qin Gaoqi Shao +3 位作者 Junxian Hou Zhi Zheng Tianyou Zhai Huiqiao Li 《Science Bulletin》 SCIE EI CAS CSCD 2017年第15期1081-1088,共8页
Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphol... Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries. 展开更多
关键词 Lithium vanadium oxide Electrospinning Lithium-ion batteries Anode carbon nanocomposite
原文传递
SiO_2@C hollow sphere anodes for lithium-ion batteries 被引量:4
18
作者 Xuelian Liu Yuxi Chen +1 位作者 Hongbo Liu Zhi-Quan Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期239-245,共7页
As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hyd... As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries. 展开更多
关键词 Silica Hollow spheres carbon coating Anode Lithium-ion batteries
原文传递
Recent progress in Li-S and Li-Se batteries 被引量:14
19
作者 Lin-Chao Zeng Wei-Han Li +1 位作者 Yu Jiang Yan Yu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期339-364,共26页
Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batter... Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batteries).Besides, Li–S and Li–Se batteries are low cost and environmental benign. However, the commercial applications of Li–S and Li–Se batteries are hindered by the dissolution and shuttle phenomena of polysulfide(polyselenium), the low conductivity of S(Se), etc. To overcome these drawbacks, scientists have come up with various methods, such as optimizing the electrolyte, synthesizing composite electrode of S/polymer, S/carbon, S/metal organic framework(MOF) and constructing novelty structure of battery.In this review, we present a systematic introduction about the recent progress of Li–S and Li–Se batteries, especially in the area of electrode materials, both of cathode material and anode material for Li–S and Li–Se batteries. In addition, other methods to lead a high-performance Li–S and Li–Se batteries are also briefly summarized, such as constructing novelty battery structure, adopting proper charge–discharge conditions, heteroatom doping into sulfur molecules, using different kinds of electrolytes and binders. In the end of the review, the developed directions of Li–S and Li–Se batteries are also pointed out. We believe that combining proper porous carbon matrix and heteroatom doping may further improve the electrochemical performance of Li–S and Li–Se batteries. We also believe that Li–S and Li–Se batteries will get more exciting results and have promising future by the effort of battery community. 展开更多
关键词 Li–S and Li–Se batteries Low cost Novelty battery structure Porous carbon matrix Heteroatom doping
原文传递
Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances 被引量:4
20
作者 Shuang-Lei Yang Bang-Hong Zhou +4 位作者 Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1293-1297,共5页
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with ... Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs. 展开更多
关键词 Tin oxide nanoparticles carbon coating Lithium ion batteries Anode nanomaterials Size-controllable synthesis
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部