期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
The Joule–Thomson effect of (CO_(2)+H_(2)) binary system relevant to gas switching reforming with carbon capture and storage(CCS)
1
作者 Zhongyao Zhang Ming Gao +4 位作者 Xiaopeng Chen Xiaojie Wei Jiezhen Liang Chenghong Wu Linlin Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期215-231,共17页
The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determin... The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determine the Joule-Thomson effect of binary mixtures(CO_(2)+ H_(2)). The accuracy of the apparatus was verified by comparing with the experimental data of carbon dioxide. The Joule-Thomson coefficients(μ_(JT)) for(CO_(2)+ H_(2)) binary mixtures with mole fractions of carbon dioxide(x_(CO_(2))= 0.1, 0.26, 0.5,0.86, 0.94) along six isotherms at various pressures were measured. Five equations of state EOSs(PR,SRK, PR, BWR and GERG-2008 equation) were used to calculate the μ_(JT)for both pure systems and binary systems, among which the GERG-2008 predicted best with a wide range of pressure and temperature.Moreover, the Joule-Thomson inversion curves(JTIC) were calculated with five equations of state. A comparison was made between experimental data and predicted data for the inversion curve of CO_(2). The investigated EOSs show a similar prediction of the low-temperature branch of the JTIC for both pure and binary systems, except for the BWRS equation of state. Among all the equations, SRK has the most similar result to GERG-2008 for predicting JTIC. 展开更多
关键词 carbon dioxide Hydrogen Joule–Thomson coefficient Joule–Thomson inversion curve Gas switching reforming(GSR) carbon capture and storage(CCS)
下载PDF
Criteria for Selecting Carbon Subsurface and Ocean Storage Site in Developing Countries: A Review
2
作者 Gregory Mwenketishi Hadj Benkreira Nejat Rahmanian 《American Journal of Climate Change》 2024年第2期103-139,共37页
Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a numbe... Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change. 展开更多
关键词 AQUIFER CCUS Site Selection carbon Dioxide capture and storage (CCS) CO2 Sequestration CCS Governmental Regulation CO2 Environment Impact Geological storage
下载PDF
Carbon Capture Technologies in OAPEC Member Countries and the Circular Carbon Economy: A Roadmap to Zero Emissions by 2050
3
作者 Salem Baidas 《Open Journal of Energy Efficiency》 2024年第2期25-37,共13页
Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neu... Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neutrality requires shifting from a linear carbon economy (LCE) to a circular carbon economy (CCE). Carbon capture and storage (CCS) technologies, including reduction, recycle, reuse, removal, and storage technologies, represent an important strategy for achieving such a shift. Herein, we investigate the effects of CCS technology adoption in six OMSs—namely the Kingdom of Saudi Arabia (KSA), Qatar, the United Arab Emirates (UAE), Kuwait, Algeria, and Iraq—by examining their Circular Carbon Economy Index (CCEI) scores, which reflect compliance with CCE-transition policies. Total CCEI, current performance CCEI dimension, and future enabler CCEI dimensions scores were compared among the aforementioned six OMSs and relative to Norway, which was used as a global-high CCEI reference standard. Specifically, CCEI general scope and CCEI oil scope dimension scores were compared. The KSA, Qatar, the UAE, and Kuwait had higher CCEI scores than Algeria and Iraq, reflecting their greater adoption of CCE-transition policies and greater emission-reducing modernization investments. The current performance CCEI scores of Algeria and Iraq appear to be buttressed to some extent by their greater natural carbon sink resources. Based on the findings, we recommend specific actions for OMSs to enhance their CCE transitions and mitigate the negative impacts associated with the associated investments, including: taking rapid practical steps to eliminate carbon oil industry emissions;detailed CCS planning by national oil companies;international cooperation and coordination;and increased investment in domestic CCS utilization infrastructure. 展开更多
关键词 OAPEC PETROLEUM Fossil Fuels carbon capture and storage Circular carbon Economy
下载PDF
Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields 被引量:2
4
作者 SONG Xinmin WANG Feng +2 位作者 MA Desheng GAO Ming ZHANG Yunhai 《Petroleum Exploration and Development》 2023年第1期229-244,共16页
The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industri... The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industrial application.The breakthrough understanding of CO_(2) flooding mechanism and field practice in recent years and the corresponding supporting technical achievements of CCUS-EOR project are systematically described.The future development prospects are also pointed out.After nearly 60 years of exploration,the theory of CO_(2) flooding and storage suitable for continental sedimentary reservoirs in China has been innovatively developed.It is suggested that C7–C15 are also important components affecting miscibility of CO_(2) and crude oil.The mechanism of rapid recovery of formation energy by CO_(2) and significant improvement of block productivity and recovery factor has been verified in field tests.The CCUS-EOR reservoir engineering design technology for continental sedimentary reservoir is established.The technology of reservoir engineering parameter design and well spacing optimization has been developed,which focuses on maintaining miscibility to improve oil displacement efficiency and uniform displacement to improve sweep efficiency.The technology of CO_(2) capture,injection and production process,whole-system anticorrosion,storage monitoring and other whole-process supporting technologies have been initially formed.In order to realize the efficient utilization and permanent storage of CO_(2),it is necessary to take the oil reservoir in the oil-water transition zone into consideration,realize the large-scale CO_(2) flooding and storage in the area from single reservoir to the overall structural control system.The oil reservoir in the oil-water transition zone is developed by stable gravity flooding of injecting CO_(2) from structural highs.The research on the storage technology such as the conversion of residual oil and CO_(2) into methane needs to be carried out. 展开更多
关键词 carbon dioxide carbon dioxide capture EOR-utilization and storage oil displacement mechanism storage mechanism injection-production process EOR
下载PDF
Conversion Carbon Capture and Storage Factors in Temperate Human Controlled Wetland
5
作者 Doimi Mauro Minetto Giorgio 《Journal of Environmental Science and Engineering(B)》 2023年第5期211-219,共9页
This paper provides guidance for the quantification and reporting of blue carbon removals in the temperate coastal ecosystems,“Italian valli da pesca”or H.C.W.(Human Controlled Wetland,Lat.45°Lon.12°),wher... This paper provides guidance for the quantification and reporting of blue carbon removals in the temperate coastal ecosystems,“Italian valli da pesca”or H.C.W.(Human Controlled Wetland,Lat.45°Lon.12°),where some pools as seagrasses,and salt marshes,are highly efficient at capturing and storing carbon dioxide(CO_(2))from the atmosphere.Halophyte salt marsh plants were found to have a%C on Dry Weight(D.W.)of 32.26±3.91(mean±standard deviation),macrophytes 33.65±7.99,seagrasses 29.23±2.23,tamarisk 48.42±2.80,while the first 5 centimetres of wetland mud,on average,had a%C of 8.56±0.94.Like the ISO(International Organization for Standardization)14064 guideline to quantify the GHG(Greenhouse Gas)emission,we have studied the different conversion factors to be used as a practical tool for measurement the CO_(2)sink activity.These factors are essential to calculate the overall carbon reduction in a project located in temperate wetland using a method as the ISO 14064.2,UNI-BNeutral,VCS VERRA or other that will come. 展开更多
关键词 Blue carbon carbon conversion factor carbon capture and storage CO_(2) UNI BNeutral VERRA VCS WETLand
下载PDF
Monitoring and Quantification of Carbon Dioxide Emissions and Impact of Sea Surface Temperature on Marine Ecosystems as Climate Change Indicators in the Niger Delta Using Geospatial Technology
6
作者 Okechukwu Okpobiri Eteh Desmond Rowland +1 位作者 Francis Emeka Egobueze Mogo Felicia Chinwe 《Journal of Atmospheric Science Research》 2023年第1期1-20,共20页
The Niger Delta marine environment has experienced a series of environmental disasters since the inception of oil and gas exploration,which can be attributed to climate change.Carbon dioxide(CO_(2))emissions and sea s... The Niger Delta marine environment has experienced a series of environmental disasters since the inception of oil and gas exploration,which can be attributed to climate change.Carbon dioxide(CO_(2))emissions and sea surface temperature(T)ties associated with burning fossil fuels,such as gas flaring,vehicular traffic,and marine vessel movement along the sea,are increasing.Using data extracted from the NASA Giovanni satellite’s Atmospheric Infrared Sounder(AIRS)and Moderate Resolution Imaging Spectroradiometer(MODIS),this study mapped the carbon footprint and T along the coastline into the deep sea from 2003 to 2011,using ArcGIS software.The spatial distribution of CO_(2) and T concentrations determined by the inverse distance weighting(IDW)method reveals variations in the study area.The results show an increase in the quantity of the mean tropospheric CO_(2) from July 2003 to December 2011,from 374.5129 ppm to 390.7831 ppm annual CO_(2) emissions,which also reflects a continuous increase.The average Monthly sea surface temperature had a general increasing trend from 25.79℃ in July 2003 to 27.8°C in December,with the Pearson correlation coefficient between CO_(2) and T indicating 50%strongly positive,20%strongly negative,20%weakly positive,and 10%weakly negative.CO_(2) levels,like temperature,follow a seasonal cycle,with a decrease during the wet season due to precipitation dissolving and plant uptake during the growing season,and then a rise during the dry season.Carbon capture and storage technologies must be implemented to benefit the marine ecosystem and human well-being. 展开更多
关键词 carbon footprint NASA Giovanni Climate change COASTLINE carbon capture and storage
下载PDF
The European Carbon dioxide Capture and Storage Laboratory Infrastructure(ECCSEL) 被引量:2
7
作者 Sverre Quale Volker Rohling 《Green Energy & Environment》 SCIE 2016年第3期180-194,共15页
The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to p... The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 CCS carbon Dioxide capture Transport and storage CO2 Research Infrastructure LABORATORY
下载PDF
Secondary Silicates as a Barrier to Carbon Capture and Storage in Deccan Basalt 被引量:1
8
作者 Amit KUMAR J.P. SHRIVASTAVA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期861-876,共16页
Investigating the immobilization of CO2,previous basalt-water-CO2 interaction studies revealed the formation of carbonates over a short period,but with the extensive formation of secondary silicates(SS).The mechanisms... Investigating the immobilization of CO2,previous basalt-water-CO2 interaction studies revealed the formation of carbonates over a short period,but with the extensive formation of secondary silicates(SS).The mechanisms involved in these processes remain unresolved,so the present study was undertaken to understand secondary mineral formation mechanisms.XRPD and Rietveld refinement data for neo-formed minerals show a drastic decrease in the Ca-O bond length,with the calcite structure degenerating after 80 h(hours).However,SEM images and EDS data revealed that a longer interaction time resulted in the formation of chlorite and smectite,adjacent to basalt grains which prevent basaltwater-CO2 interaction to form carbonates,thus restricting carbonate formation.As a result of this,the CO2 mineralization rate is initially high(till 80 h),but it later reduces drastically.It is evident that,for such temperature-controlled transformations,low temperature is conducive to minimizing SS surface coating at the time of mineral carbonation. 展开更多
关键词 basalt-water-CO2 interaction carbon capture and storage CO2 mineralization leachate chemistry normalized mass loss secondary silicates
下载PDF
Carbon capture and storage,geomechanics and induced seismic activity
9
作者 James P.Verdon Anna L.Stork 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期928-935,共8页
Injection of large volumes of carbon dioxide(CO) for the purposes of greenhouse-gas emissions reduction has the potential to induce earthquakes.Operators of proposed projects must therefore take steps to reduce the ri... Injection of large volumes of carbon dioxide(CO) for the purposes of greenhouse-gas emissions reduction has the potential to induce earthquakes.Operators of proposed projects must therefore take steps to reduce the risks posed by this induced seismicity.In this paper,we examine the causes of injection-induced seismicity(IIS),and how it should be monitored and modelled,and thereby mitigated.Many US case studies are found where fluids are injected into layers that are in close proximity to crystalline basement rocks.We investigate this issue further by comparing injection and seismicity in two areas where oilfield wastewater is injected in significant volumes:Oklahoma,where fluids are injected into a basal layer,and Saskatchewan,where fluids are injected into a much shallower layer.We suggest that the different induced seismicity responses in these two areas are at least in part due to these different injection depths.We go on to outline two different approaches for modelling IIS:a statistics based approach and a physical,numerical modelling based approach.Both modelling types have advantages and disadvantages,but share a need to be calibrated with good quality seismic monitoring data if they are to be used with any degree of reliability.We therefore encourage the use of seismic monitoring networks at all future carbon capture and storage(CCS) sites. 展开更多
关键词 carbon capture and storage(CCS) Induced seismicity GEOMECHANICS
下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:6
10
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience carbon reduction technologies carbon neutrality Energy transition Underground energy storage carbon capture utilization and storage(CCUS)
下载PDF
A review of in situ carbon mineralization in basalt
11
作者 Xiaomin Cao Qi Li +1 位作者 Liang Xu Yongsheng Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1467-1485,共19页
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt... Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research. 展开更多
关键词 carbon mineralization BASALT CO_(2)-fluid-basalt interaction Petrophysical evolution Mechanical response carbon capture and storage(CCS)
下载PDF
Recent advances,challenges,and perspectives on carbon capture
12
作者 Shihan Zhang Yao Shen +11 位作者 Chenghang Zheng Qianqian Xu Yifang Sun Min Huang Lu Li Xiongwei Yang Hao Zhou Heliang Ma Zhendong Li Yuanhang Zhang Wenqing Liu Xiang Gao 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第6期75-104,共30页
Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,... Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application.To that end,this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations.Then,based on a visually bibliometric analysis,the carbon capture remains a hotspot in the CCUS development.Noting that the materials applied in the carbon capture process determines its performance.As a result,the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed.Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed,and insights into the research needs such as material design,process optimization,environmental impact,and technical and economic assessments are provided. 展开更多
关键词 carbon capture utilization and storage Visualization analysis Research hotspots and trends CO_(2)capture technology
原文传递
Carbon peak and carbon neutrality in China:Goals,implementation path and prospects 被引量:32
13
作者 Yao Wang Chi-hui Guo +6 位作者 Xi-jie Chen Li-qiong Jia Xiao-na Guo Rui-shan Chen Mao-sheng Zhang Ze-yu Chen Hao-dong Wang 《China Geology》 2021年第4期720-746,共27页
Climate change is a common problem in human society.The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060.The proposal of the goal of carbon peak... Climate change is a common problem in human society.The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060.The proposal of the goal of carbon peak and carbon neutralization has led China into the era of climate economy and set off a green change with both opportunities and challenges.On the basis of expounding the objectives and specific connotation of China’s carbon peak and carbon neutralization,this paper systematically discusses the main implementation path and the prospect of China’s carbon peak and carbon neutralization.China’s path to realizing carbon neutralization includes four directions:(1)in terms of carbon dioxide emission control:energy transformation path,energy conservation,and emission reduction path;(2)for increasing carbon sink:carbon capture,utilization,and storage path,ecological governance,and land greening path;(3)in key technology development:zero-carbon utilization,coal new energy coupling,carbon capture utilization and storage(CCUS),energy storage technology and other key technology paths required to achieve carbon peak and carbon neutralization;(4)from the angle of policy development:Formulate legal guarantees for the government to promote the carbon trading market;Formulate carbon emission standards for enterprises and increase publicity and education for individuals and society.Based on practicing the goal and path of carbon peak and carbon neutralization,China will vigorously develop low carbon and circular economy and promote green and high-quality economic development;speed up to enter the era of fossil resources and promoting energy transformation;accelerate the integrated innovation of green and low-carbon technologies and promote carbon neutrality. 展开更多
关键词 carbon peak carbon neutralization Energy transformation path carbon emissions carbon capture and storage Renewable energy Climate change Policy development China
下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model 被引量:1
14
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 carbonATE carbon capture utilization and storage(CCUS) Jet fracturing Coupled model Geothermal reservoir
下载PDF
Linear Global Temperature Correlation to Carbon Dioxide Level, Sea Level, and Innovative Solutions to a Projected 6°C Warming by 2100
15
作者 Thomas F. Valone 《Journal of Geoscience and Environment Protection》 2021年第3期84-135,共52页
Too many climate committees, conferences, articles and publications continue to suggest a one and a half (1.5<span style="white-space:nowrap;">°</span>C) to two degrees (2<span style=&quo... Too many climate committees, conferences, articles and publications continue to suggest a one and a half (1.5<span style="white-space:nowrap;">°</span>C) to two degrees (2<span style="white-space:nowrap;">&deg;</span>C) Celsius as an achievable global limit to climate changes without establishment of any causal link to the proposed anti-warming mechanism. A comprehensive review has found instead that observationally informed projections of climate science underlying climate change offer a different outlook of five to six-degree (5<span style="white-space:nowrap;">°</span>C - 6<span style="white-space:nowrap;">°</span>C) increase as “most accurate” with regard to present trends, climate history and models, yielding the most likely outcome for 2100. The most causative triad for the present warming trend from 1950 to the present is identified in this paper: 1) the tripling (3×) of world population;2) the quadrupling (4×) of carbon emissions;and 3) the quintupling (5×) of the world energy consumption. This paper presents a quantitative, linear global temperature correlation to carbon dioxide levels that has great predictive value, a short temporal feedback loop, and the finding that it is also reversible. The Vostok ice core temperature and CO2 values for the past 400,000 years, with past sea level estimates have produced the sufficiently evidential “Hansen’s Graph”. Detailed analysis results in an equation for global average temperature change and an indebted, long-term sea level rise, from even a 20 ppm of CO2 change above 290 ppm, commonly taken as a baseline for levels before 1950. Comparison to the well-known 800,000 year old Dome C ice core is also performed. The best-performing climate change models and observational analysis are seen to project more warming than the average model often relied upon. World atmosphere, temperature, and sea level trends for 2100 and beyond are analyzed. A laboratory experiment proves the dramatic heat-entrapment capability of CO<sub>2</sub> compared to pure air, which yields insights into the future global atmospheric system. Policy-relevant climate remediation, including gigaton carbon capture, zero and negative emissions and positive individual action, are reviewed and updated, with recommendations. 展开更多
关键词 Climate Change Global Warming Global Cooling Average World Temperature Thermal Forcing carbon Dioxide PETM Car-bon Emission carbon capture and storage carbon Sequestration Heat-Trapping
下载PDF
Carbon Dioxide Sequestration Methodothologies—A Review
16
作者 Gregory Mwenketishi Hadj Benkreira Nejat Rahmanian 《American Journal of Climate Change》 2023年第4期579-627,共49页
The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO<sub>2</sub> emissions originating from coal, oil, and gas sector... The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO<sub>2</sub> emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO<sub>2</sub> on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO<sub>2</sub> storage. This stage involves primarily the adsorption of CO<sub>2</sub> in the ocean and the injection of CO<sub>2</sub> into subsurface reservoir formations. Additionally, the process of CO<sub>2</sub> reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO<sub>2</sub> into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO<sub>2</sub> injection and storage systems, with a specific focus on CO<sub>2</sub> storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO<sub>2</sub> thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance. 展开更多
关键词 AQUIFER carbon Subsurface storage (CSS) CO2 Sequestration Environment Geological storage carbon capture and storage (CCS)
下载PDF
Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks
17
作者 Qi-Ye Ju Jia-Jia Zheng +6 位作者 Li Xu Hai-Yan Jiang Zi-Qian Xue Lu Bai Yang-Yang Guo Ming-Shui Yao Ting-Yu Zhu 《Nano Research》 SCIE EI CSCD 2024年第3期2004-2010,共7页
The use of metal-organic frameworks(MOFs)as solid adsorption materials for carbon capture is promising,but achieving efficient and reversible adsorption with a balance of capacity and selectivity for carbon dioxide(CO... The use of metal-organic frameworks(MOFs)as solid adsorption materials for carbon capture is promising,but achieving efficient and reversible adsorption with a balance of capacity and selectivity for carbon dioxide(CO_(2))over N_(2) remains a challenge.To take full advantage of the strong channel traffic and robustness of MOFs with relatively small pores,it is highly necessary to employ a defect-engineering strategy to construct a broader channel structure that can facilitate the loading of functional motif-rich amino acids(AAs).This strategy can greatly enhance the CO_(2) adsorption performance of MOF.In this study,motif-rich amino acids are loaded into the defective and robust porous frameworks via combined defect-engineering and post-synthetic methods.The defective Zr/Hf-MOF-808s modified with AAs,especially for the 18 mol%4-nitroisophthalic acid,generated defective products allowing for the loading of L-serine(L-Ser).This modification resulted in a significant improvement in both the adsorption capacity(248%improvement at 298 K,100 kPa)and the selectivity of CO_(2)/N_(2) using the ideal adsorbed solution theory(IAST),with the selectivity increasing to 120.55 and 38.27 at 15 and 100 kPa,respectively,while maintaining good cycling performance.Density functional theory(DFT)simulation,CO_(2) temperature-programmed desorption(CO_(2)-TPD),and in situ Fourier transform infrared spectroscopy(FTIR)were further employed to have a better understanding of the enhanced CO_(2) adsorption capacity.Interestingly,unlike the AAs loaded pristine MOF-808s that showed the best CO_(2) adsorption capacity with the loading of short and small glycine(Gly),the broadened channel size in our work enables the loading of functional motif-rich L-serine,which brings more active binding sites,improving CO_(2) adsorption. 展开更多
关键词 carbon capture and storage metal-organic framework(MOF) amino acids(AAs) defect-engineering motif-rich
原文传递
Laboratory core flooding experimental systems for CO_2 geosequestration: An updated review over the past decade 被引量:3
18
作者 Yankun Sun Qi Li +1 位作者 Duoxing Yang Xuehao Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期113-126,共14页
Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as... Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions. 展开更多
关键词 carbon capture and storage(CCS) Geosequestration Trapping mechanism Core flooding Saline aquifer Experimental apparatus
下载PDF
Experimental salt cavern in offshore ultra-deep water and well designevaluation for CO_(2) abatement 被引量:2
19
作者 Alvaro Maia da Costa Pedro V.M.Costa +12 位作者 Antonio C.O.Miranda Mariana B.R.Goulart Okhiria D.Udebhulu Nelson F.F.Ebecken Ricardo C.Azevedo Sérgio M.de Eston Giorgio de Tomi Andre B.Mendes Julio R.Meneghini Kazuo Nishimoto Claudio Mueller Sampaio Camila Brandao Alexandre Breda 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期641-656,共16页
This paper presents a proposal for an experimental salt cavern in offshore ultra-deep water for CO2 abatement,including the instrumentation plan and well conceptual design evaluated for carbon capture and storage(CCS)... This paper presents a proposal for an experimental salt cavern in offshore ultra-deep water for CO2 abatement,including the instrumentation plan and well conceptual design evaluated for carbon capture and storage(CCS)application.These studies are based on applied computational mechanics associated with field experimentation that has contributed to the technical feasibility of the underground potash mine at the State of Sergipe in Brazil.This knowhow allowed the stability analysis of several salt caverns for brine production at the State of Alagoas in Brazil and to the drilling through stratified thick layers of salt of the pre-salt reservoirs in Santos Basin.Now,this knowledge has been applied in the design of onshore and offshore salt caverns opened by dissolution for storage of natural gas and CO2.The geomechanical study,through the application of computational mechanics,of offshore giant salt caverns of 450 m high by 150 m in diameter,shows that one cavern can store about 4 billion Sm3 or 7.2 million tons of CO2.Before the construction of the giant cavern,which will be the first gas storage offshore in the world,it has been decided to develop an experimental one,with smaller size,to obtained field parameters.The experimental cavern will allow the calibration of parameters to be used in the structural integrity analysis of the cavern and well for storage of natural gas which is rich in CO2 under high pressure. 展开更多
关键词 Salt cavern Pre-salt reservoir Geomechanical study carbon capture and storage
下载PDF
High adsorption and separation performance of CO_(2) over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks
20
作者 姜永超 李桂霞 +3 位作者 于桂凤 王娟 黄树来 徐国亮 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期625-631,共7页
Azo-based pillar[6]arene supramolecular organic frameworks are reported for CO_(2) and N_(2) adsorption and separation by density functional theory and grand canonical Monte–Carlo simulation.Azo-based pillar[6]arene ... Azo-based pillar[6]arene supramolecular organic frameworks are reported for CO_(2) and N_(2) adsorption and separation by density functional theory and grand canonical Monte–Carlo simulation.Azo-based pillar[6]arene provides suitable environment for CO_(2) adsorption and selectivity.The adsorption and selectivity results show that introducing azo groups can effectively improve CO_(2) adsorption and selectivity over N_(2),and both CO_(2) adsorption and CO_(2) selectivity over N_(2) follow the sequence pillar[6]arene N_(4)>pillar[6]arene N2>pillar[6]arene.Pillar[6]arene N_(4) exhibits CO_(2) adsorption capacity of1.36 mmol/g,and superior selectivity of CO_(2) over N_(2) of116.75 with equal molar fraction at 1 bar(1 bar=105 Pa)and 298 K.Interaction analysis confirms that both the Coulomb and van derWaals interactions between CO_(2) with pillar[6]arene frameworks are greater than that of N_(2).The stronger affinity of CO_(2) with pillar[6]arene N_(4) than other structures and the larger isosteric heat differences between CO_(2) and N2 rendered pillar[6]arene N4 to present the high CO_(2) adsorption capacity and high CO_(2) selectivity over N_(2).Our results highlight the potential of azo-functionalization as an excellent means to improve pillar[6]arene for CO_(2) capture and separation. 展开更多
关键词 supramolecular organic framework FUNCTIONALIZATION modelling and simulation carbon capture and storage
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部