The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium...The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems.展开更多
C/C composite material is widely used in aerospace field and others, however, it is easy to be oxidized at high temperature.In order to improve the oxidation resistance, ZrC is introduced as an oxidation inhibitor use...C/C composite material is widely used in aerospace field and others, however, it is easy to be oxidized at high temperature.In order to improve the oxidation resistance, ZrC is introduced as an oxidation inhibitor used in matrix modification of C/C composite material. Flat plate samples of ZrC/C composite materials were prepared by hot-pressing sintering. The degree of graphitization increases with rising sintering temperature, and layer structure of carbon matrix is observed clearly in the sample treated at 2273 K. Diffusion behavior of Zr in C matrix at high temperature is studied, which can be generally expressed as D=3.382×10?11 exp[2.029×105/(RT)]. The diffusion of Zr in C matrix leads to the over-saturation of C in the micro area and the oversaturated C precipitates as graphite. This continuous process promotes the transformation of carbon to graphite.展开更多
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th...Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.展开更多
It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selec...It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selected as carbon precursor.Then,a simple and environmentally friendly method was designed to synthesize heteroatom self-doped porous carbon materials via synchronous activation and graphitization by using K_(2)FeO_(4).Our results demonstrated that activation temperature plays an important role in porous structure,morphology,and degree of graphitization,thus affecting the performance of supercapacitance.Sargassum thunbergii-based graphitized porous carbons STGPC-2 sample(calcination temperature at 700℃)has a large specific surface area(1641.98 m^(2)g^(-1)),pore volume(0.91 cm^(3)g^(-1)),high microporosity(Vmicro=0.62 cm^(3)g1,more than 68%),and a certain degree of graphitization.In three-electrode system,The STGPC-2 electrode exhibited a high specific capacitance of 325.5 F g^(-1)at 0.5 A g^(-1)and displays high rate capability(248 F g^(-1)at 10 A g^(-1)in 6 M KOH electrolyte).The symmetric STGPC-2 supercapacitor exhibits energy density as high as 21.3 Wh kg^(-1)(at a power density of 450 W kg^(-1))and excellent long-term cycling stability(97%capacitance retention after 3000 cycles)in 1 M Na2SO4 electrolyte.展开更多
The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of ce...The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.展开更多
The results of experimental studies of carbon materials, which are formed in the plasma of a direct current (DC) arc discharge initiated in open air from the asphaltenes of different origins, extracted from the natura...The results of experimental studies of carbon materials, which are formed in the plasma of a direct current (DC) arc discharge initiated in open air from the asphaltenes of different origins, extracted from the natural asphaltite and from the oil of the Sredne-Ugutskoye Oilfield, are presented. The influence of the initial asphaltene composition on the composition and properties of the resulting carbon materials is analyzed. The initial asphaltenes and the samples of the carbon materials are characterized by the methods of X-ray diffraction, differential thermal analysis, X-ray fluorescence analysis, IR-Fourier spectroscopy, laser diffraction, transmission and scanning electron microscopy. The changes in the composition and structure of the asphaltenes are determined before and after their plasma treatment and the hypotheses are put forward concerning the chemical processes causing the changes in the molecular structure of the samples. As a result of plasma treatment of asphaltenes (100 A, 30 s), it was shown that graphitization occurs, as well as oxidation, and a decrease in sulfur content. Moreover, nanotubes and nano-onions have been detected using electron microscopy. Petroleum asphaltenes after plasma treatment give a less thermostable carbon material, but with a lower content of heteroatoms, and with a large amount of sulfur in the composition of sulfoxide structural fragments. This method is shown to be a promising technology for processing the petroleum feedstock enriched with heavy asphaltene components for the manufacture of carbon nanomaterials: nanotubes, nano-onions and polyhedral graphite.展开更多
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ...The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.展开更多
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS...Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.展开更多
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t...A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.展开更多
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio...A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.展开更多
As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area ...As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.展开更多
Rechargeable aluminum-ion batteries(AIBs)are a new generation of low-cost and large-scale electrical energy storage systems.However,AIBs suffer from a lack of reliable cathode materials with insufficient intercalation...Rechargeable aluminum-ion batteries(AIBs)are a new generation of low-cost and large-scale electrical energy storage systems.However,AIBs suffer from a lack of reliable cathode materials with insufficient intercalation sites,poor ion-conducting channels,and poor diffusion dynamics of large chloroaluminate anions(AlCl4−and Al2Cl7−).To address these issues,surfacemodified graphitic carbon materials[i.e.,acidtreated expanded graphite(AEG)and base-etched graphite(BEG)]are developed as novel cathode materials for ultra-fast chargeable AIBs.AEG has more turbostratically ordered structure covered with abundant micro-to nano-sized pores on the surface structure and expanded interlayer distance(d002=0.3371 nm)realized by surface treatment of pristine graphite with acidic media,which can be accelerated the diffusion dynamics and efficient AlCl4−ions(de)-intercalation kinetics.The AIB system employing AEG exhibits a specific capacity of 88.6 mAh g^(−1)(4 A g^(−1))and~80 mAh g^(−1) at an ultra-high current rate of 10 A g^(−1)(~99.1%over 10,000 cycles).BEG treated with KOH solution possesses the turbostratically disordered structure with high density of defective sites and largely expanded d-spacing(d002=0.3384 nm)for attracting and uptaking more AlCl4−ions with relatively shorter penetration depth.Impressively,the AIB system based on the BEG cathode delivers a high specific capacity of 110 mAh g^(−1)(4 A g^(−1))and~91 mAh g^(−1)(~99.9%over 10,000 cycles at 10 A g^(−1)).Moreover,the BEG cell has high energy and power densities of 247 Wh kg^(−1) and 44.5 kW kg^(−1).This performance is one of the best among the AIB graphitic carbon materials reported for chloroaluminate anions storage performance.This finding provides great significance for the further development of rechargeable AIBs with high energy,high power density,and exceptionally long life.展开更多
The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synth...The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.展开更多
The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the ...The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.展开更多
硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制...硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。展开更多
基金financially supported by National Key Research and Development Program of China(2018YFC1901605)the National Postdoctoral Program for Innovative Talents(BX201600192)+1 种基金Hunan Provincial Science and Technology Plan(2017TP1001)Innovation Mover Program of Central South University(GCX20190893Y)。
文摘The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems.
基金Projects(51272154,51472156)supported by the National Natural Science Foundation of ChinaProject(9140C5601010801)supported by the Pre-Research Foundation of General Armaments Department,China
文摘C/C composite material is widely used in aerospace field and others, however, it is easy to be oxidized at high temperature.In order to improve the oxidation resistance, ZrC is introduced as an oxidation inhibitor used in matrix modification of C/C composite material. Flat plate samples of ZrC/C composite materials were prepared by hot-pressing sintering. The degree of graphitization increases with rising sintering temperature, and layer structure of carbon matrix is observed clearly in the sample treated at 2273 K. Diffusion behavior of Zr in C matrix at high temperature is studied, which can be generally expressed as D=3.382×10?11 exp[2.029×105/(RT)]. The diffusion of Zr in C matrix leads to the over-saturation of C in the micro area and the oversaturated C precipitates as graphite. This continuous process promotes the transformation of carbon to graphite.
基金supported by the National Natural Science Foundation of China(No.52274346).
文摘Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.
基金supported by the Natural Science Foundation of Shandong Province(ZR2020MB075)the National Natural Science Foundation of China(22074079).
文摘It is well-known that high specific surface area and improved pore structure is significantly desired for the application of supercapacitor based on biomass-based activated carbon.Herein,Sargassum thunbergii was selected as carbon precursor.Then,a simple and environmentally friendly method was designed to synthesize heteroatom self-doped porous carbon materials via synchronous activation and graphitization by using K_(2)FeO_(4).Our results demonstrated that activation temperature plays an important role in porous structure,morphology,and degree of graphitization,thus affecting the performance of supercapacitance.Sargassum thunbergii-based graphitized porous carbons STGPC-2 sample(calcination temperature at 700℃)has a large specific surface area(1641.98 m^(2)g^(-1)),pore volume(0.91 cm^(3)g^(-1)),high microporosity(Vmicro=0.62 cm^(3)g1,more than 68%),and a certain degree of graphitization.In three-electrode system,The STGPC-2 electrode exhibited a high specific capacitance of 325.5 F g^(-1)at 0.5 A g^(-1)and displays high rate capability(248 F g^(-1)at 10 A g^(-1)in 6 M KOH electrolyte).The symmetric STGPC-2 supercapacitor exhibits energy density as high as 21.3 Wh kg^(-1)(at a power density of 450 W kg^(-1))and excellent long-term cycling stability(97%capacitance retention after 3000 cycles)in 1 M Na2SO4 electrolyte.
基金Funded by the National Natural Science Foundation of China(No.50878170 and No. 10672128)
文摘The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.
基金funded by a grant from the Russian Science Foundation(Project No.22-13-20016)carried out at the Surgut State University and Tomsk Polytechnic University.
文摘The results of experimental studies of carbon materials, which are formed in the plasma of a direct current (DC) arc discharge initiated in open air from the asphaltenes of different origins, extracted from the natural asphaltite and from the oil of the Sredne-Ugutskoye Oilfield, are presented. The influence of the initial asphaltene composition on the composition and properties of the resulting carbon materials is analyzed. The initial asphaltenes and the samples of the carbon materials are characterized by the methods of X-ray diffraction, differential thermal analysis, X-ray fluorescence analysis, IR-Fourier spectroscopy, laser diffraction, transmission and scanning electron microscopy. The changes in the composition and structure of the asphaltenes are determined before and after their plasma treatment and the hypotheses are put forward concerning the chemical processes causing the changes in the molecular structure of the samples. As a result of plasma treatment of asphaltenes (100 A, 30 s), it was shown that graphitization occurs, as well as oxidation, and a decrease in sulfur content. Moreover, nanotubes and nano-onions have been detected using electron microscopy. Petroleum asphaltenes after plasma treatment give a less thermostable carbon material, but with a lower content of heteroatoms, and with a large amount of sulfur in the composition of sulfoxide structural fragments. This method is shown to be a promising technology for processing the petroleum feedstock enriched with heavy asphaltene components for the manufacture of carbon nanomaterials: nanotubes, nano-onions and polyhedral graphite.
文摘The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.
基金financially supported by the National Natural Science Foundation of China(No.61804136,U1804155,11974317,62027816,12074348,and U2004168)Henan Science Fund for Distinguished Young Scholars(No.212300410020)+2 种基金Natural Science Foundation of Henan Province(No.212300410020 and 212300410078)Key Project of Henan Higher Education(No.21A140001)the Zhengzhou University Physics Discipline Improvement Program and China Postdoctoral Science Foundation(No.2018M630829 and 2019 T120630)
文摘Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices.
基金supported by the Natural Science Foundation of China(NSFC Grant No.20803064)the Natural Science Foundation of Zhejiang Provence(Y4090348 and LY12B03007)Qianjiang Talent Project in Zhejiang Province(2010R10039 and 2013R10056)
文摘A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.
基金financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21071107,21277094,and21103119)Production and Research Collaborative Innovation Project of Jiangsu Province(No.BY2012123)+9 种基金Natural Science Foundation of Jiangsu Province(No.BK2012167)Scienceand Technology Pillar Program(Industry)of Jiangsu Province(No.BE2012101)Collegiate Natural Science Fund of Jiangsu Province(Nos.12KJA430005,09KJB30003,and11KJB430012)Key Laboratory for Environment Functional Materials of Suzhou(No.SZS201008)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Applied Basic Research Project of Suzhou(No.SYG201242)Industrial Surport Project of Suzhou(No.SG201138)Jiangsu Key Laboratory of Material Tribology(No.Kjsmcx2011001)Jiangsu Key Laboratory for Photon Manufacturing(No.GZ201111)Jiangsu Provincial Key Laboratory for Interventional Medical Devices(No.Jr1210)Creative Project of Postgraduate of Jiangsu Province(No.CXZZ11_0954)
文摘A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.
基金supported by the Startup Foundation of China(3160011181808)。
文摘As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.
基金This work was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(No.NRF-2019R1I1A3A01046928)the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600100).
文摘Rechargeable aluminum-ion batteries(AIBs)are a new generation of low-cost and large-scale electrical energy storage systems.However,AIBs suffer from a lack of reliable cathode materials with insufficient intercalation sites,poor ion-conducting channels,and poor diffusion dynamics of large chloroaluminate anions(AlCl4−and Al2Cl7−).To address these issues,surfacemodified graphitic carbon materials[i.e.,acidtreated expanded graphite(AEG)and base-etched graphite(BEG)]are developed as novel cathode materials for ultra-fast chargeable AIBs.AEG has more turbostratically ordered structure covered with abundant micro-to nano-sized pores on the surface structure and expanded interlayer distance(d002=0.3371 nm)realized by surface treatment of pristine graphite with acidic media,which can be accelerated the diffusion dynamics and efficient AlCl4−ions(de)-intercalation kinetics.The AIB system employing AEG exhibits a specific capacity of 88.6 mAh g^(−1)(4 A g^(−1))and~80 mAh g^(−1) at an ultra-high current rate of 10 A g^(−1)(~99.1%over 10,000 cycles).BEG treated with KOH solution possesses the turbostratically disordered structure with high density of defective sites and largely expanded d-spacing(d002=0.3384 nm)for attracting and uptaking more AlCl4−ions with relatively shorter penetration depth.Impressively,the AIB system based on the BEG cathode delivers a high specific capacity of 110 mAh g^(−1)(4 A g^(−1))and~91 mAh g^(−1)(~99.9%over 10,000 cycles at 10 A g^(−1)).Moreover,the BEG cell has high energy and power densities of 247 Wh kg^(−1) and 44.5 kW kg^(−1).This performance is one of the best among the AIB graphitic carbon materials reported for chloroaluminate anions storage performance.This finding provides great significance for the further development of rechargeable AIBs with high energy,high power density,and exceptionally long life.
文摘The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.
文摘The expanded graphite (EG) with a low density and better extinction performance can be used in military as passive jamming material in IR and MMW bands. Its complex refractive index is a significant parameter for the extinction property. This paper presents a method to calculate the complex refractive index of EG. The reflection spectra of EG pellets were measured in the 0.24-2.6μm and 2.5-25μm bands, respectively. Based on the measurement results, the complex refractive index of EG in 5-10μm band was calculated by using Kramers-Kronig(K-K) relation and Bruggeman effective medium theory, and then the errors were analyzed. The results indicate that it is feasible to calculate the complex refractive index of EG based on its IR reflection spectra data.
文摘硅负极材料因具有较高的理论容量(Li22Si5合金相对应4200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。