期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Two-Dimensional Zonally Averaged Ocean Carbon Cycle Model 被引量:1
1
作者 徐永福 王明星 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第3期88-97,共10页
An ocean carbon cycle model driven by a constant flow field produced by a two-dimensional thermohaline circulation model is developed. Assuming that the biogenic carbon in the oceans is in a dynamic equilibrium, the i... An ocean carbon cycle model driven by a constant flow field produced by a two-dimensional thermohaline circulation model is developed. Assuming that the biogenic carbon in the oceans is in a dynamic equilibrium, the inorganic carbon cycle is investigated. Before the oceanic uptake of CO_2 is carried out, the investigation of 14C distributions in the oceans, including natural and bomb-produced 14C,is conducted by using different values of the exchange coefficient of CO_2for different flow fields (different vertical diffusivities) to test the performance of the model. The suitable values of the exchange coefficient and vertical diffusivities are chosen for the carbon cycle model. Under the forcing of given preindustrial atmospheric CO_2 concentration of 280 ppmv, the carbon cycle model is integrated for seven thousand years to reach a steady state. For the human perturbation, two methods including the prescribed atmospheric pCO_2 and prescribed industrial emissions are used in this work. The results from the prescribed atmospheric pCO_2 show that the oceans take up 36% of carbon dioxide released by human activities for the period of 1980-1989, while the results from the prescribed industrial emission rates show that the oceans take up 34% of carbon dioxide emitted by industrial sources for the same period. By using the simple method of subtracting industrial emission rate from the total atmosphere+ocean accumulating rate, it can be deduced that before industrial revolution a non-industrial source exists, while after 1940 an extra sink is needed, and that a total non-industrial source of 45 GtC is obtained for the period of 1790-1990. 展开更多
关键词 Ocean carbon cycle model Thermohaline circulation Radiocarbon Non-industrial sources
下载PDF
A SIMULATION OF CO2 UPTAKE IN A THREE DIMENSIONAL OCEAN CARBON CYCLE MODEL
2
作者 JIN Xin(金心) +1 位作者 SHI Guangyu(石广玉) 《Acta meteorologica Sinica》 SCIE 2001年第1期29-39,共11页
A three-dimensional ocean carbon cycle model which is a general circulation model coupled with simple biogeochemical processes is used to simulate CO_2 uptake by the ocean.The OGCM used is a modified version of the Ge... A three-dimensional ocean carbon cycle model which is a general circulation model coupled with simple biogeochemical processes is used to simulate CO_2 uptake by the ocean.The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model (MOM2).The ocean chemistry and a simple ocean biota model are included.Principal variables are total CO_2,alkalinity and phosphate.The vertical profile of POC flux observed by sediment traps is adopted,the rain ratio,a ratio of production rate of calcite against that of POC,and the bio-production efficiency should be 0.06 and 2 per year,separately.The uptake of anthropogenic CO_2 by the ocean is studied.Calculated oceanic uptake of anthropogenic CO_2 during the 1980s is 2.05×10~(15)g(Pg)per year.The regional distributions of global oceanic CO_2 are discussed. 展开更多
关键词 anthropogenic CO_2 ocean uptake three-dimensional model ocean carbon cycle model regional distribution
原文传递
Historical simulation and twenty-first century prediction of oceanic CO_2 sink and pH change 被引量:3
3
作者 BAO Ying QIAO Fangli SONG Zhenya 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第5期87-97,共11页
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospher... A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere. 展开更多
关键词 ocean carbon cycle model air-sea CO 2 flux anthropogenic carbon pH value
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部