The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determin...The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determine the Joule-Thomson effect of binary mixtures(CO_(2)+ H_(2)). The accuracy of the apparatus was verified by comparing with the experimental data of carbon dioxide. The Joule-Thomson coefficients(μ_(JT)) for(CO_(2)+ H_(2)) binary mixtures with mole fractions of carbon dioxide(x_(CO_(2))= 0.1, 0.26, 0.5,0.86, 0.94) along six isotherms at various pressures were measured. Five equations of state EOSs(PR,SRK, PR, BWR and GERG-2008 equation) were used to calculate the μ_(JT)for both pure systems and binary systems, among which the GERG-2008 predicted best with a wide range of pressure and temperature.Moreover, the Joule-Thomson inversion curves(JTIC) were calculated with five equations of state. A comparison was made between experimental data and predicted data for the inversion curve of CO_(2). The investigated EOSs show a similar prediction of the low-temperature branch of the JTIC for both pure and binary systems, except for the BWRS equation of state. Among all the equations, SRK has the most similar result to GERG-2008 for predicting JTIC.展开更多
The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to p...The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a numbe...Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.展开更多
The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO<sub>2</sub> emissions originating from coal, oil, and gas sector...The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO<sub>2</sub> emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO<sub>2</sub> on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO<sub>2</sub> storage. This stage involves primarily the adsorption of CO<sub>2</sub> in the ocean and the injection of CO<sub>2</sub> into subsurface reservoir formations. Additionally, the process of CO<sub>2</sub> reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO<sub>2</sub> into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO<sub>2</sub> injection and storage systems, with a specific focus on CO<sub>2</sub> storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO<sub>2</sub> thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance.展开更多
Carbon dioxide (CO2) is the primary anthropogenic greenhouse gas (GHG). India’s CO2 emissions are expected to increase 70% by 2025. Geologic carbon storage (GCS) offers a way to reduce CO2 emissions. Here we present ...Carbon dioxide (CO2) is the primary anthropogenic greenhouse gas (GHG). India’s CO2 emissions are expected to increase 70% by 2025. Geologic carbon storage (GCS) offers a way to reduce CO2 emissions. Here we present the results of a search for the most cost-effective GCS opportunities in India. Source-Sink matching for large and concentrated CO2 sources near geological storage in India indicates one very high priority target, a fertilizer plant in the city of Narmadanagar in Bharuch District of Gujarat Province, India that is <20 km from old oil and gas fields in the Cambay Basin. Two pure CO2 sources are <20 km from deep saline aquifers and one展开更多
Too many climate committees, conferences, articles and publications continue to suggest a one and a half (1.5<span style="white-space:nowrap;">°</span>C) to two degrees (2<span style=&quo...Too many climate committees, conferences, articles and publications continue to suggest a one and a half (1.5<span style="white-space:nowrap;">°</span>C) to two degrees (2<span style="white-space:nowrap;">°</span>C) Celsius as an achievable global limit to climate changes without establishment of any causal link to the proposed anti-warming mechanism. A comprehensive review has found instead that observationally informed projections of climate science underlying climate change offer a different outlook of five to six-degree (5<span style="white-space:nowrap;">°</span>C - 6<span style="white-space:nowrap;">°</span>C) increase as “most accurate” with regard to present trends, climate history and models, yielding the most likely outcome for 2100. The most causative triad for the present warming trend from 1950 to the present is identified in this paper: 1) the tripling (3×) of world population;2) the quadrupling (4×) of carbon emissions;and 3) the quintupling (5×) of the world energy consumption. This paper presents a quantitative, linear global temperature correlation to carbon dioxide levels that has great predictive value, a short temporal feedback loop, and the finding that it is also reversible. The Vostok ice core temperature and CO2 values for the past 400,000 years, with past sea level estimates have produced the sufficiently evidential “Hansen’s Graph”. Detailed analysis results in an equation for global average temperature change and an indebted, long-term sea level rise, from even a 20 ppm of CO2 change above 290 ppm, commonly taken as a baseline for levels before 1950. Comparison to the well-known 800,000 year old Dome C ice core is also performed. The best-performing climate change models and observational analysis are seen to project more warming than the average model often relied upon. World atmosphere, temperature, and sea level trends for 2100 and beyond are analyzed. A laboratory experiment proves the dramatic heat-entrapment capability of CO<sub>2</sub> compared to pure air, which yields insights into the future global atmospheric system. Policy-relevant climate remediation, including gigaton carbon capture, zero and negative emissions and positive individual action, are reviewed and updated, with recommendations.展开更多
The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emiss...The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.展开更多
碳捕集与封存(Carbon Capture and Storage,CCS)作为最有前景可有效深度减排的低碳技术之一,在世界范围内受到广泛推行,特别是欧洲,其作为全球CCS技术的先行者,一直在积极推进该项技术工业化进程。2009年,欧盟委员会(European Commissio...碳捕集与封存(Carbon Capture and Storage,CCS)作为最有前景可有效深度减排的低碳技术之一,在世界范围内受到广泛推行,特别是欧洲,其作为全球CCS技术的先行者,一直在积极推进该项技术工业化进程。2009年,欧盟委员会(European Commission,EC)启动欧洲能源复兴计划(European Energy Programme for Recovery,EEPR),正式批准资助6个全流程CCS示范项目。这6个CCS示范项目囊括了当前所有可行的CO2工业捕集技术,运输方式以及封存方法,本文将对其基本情况和最近进展进行介绍,并重点对欧盟层面的CCS法律法规与此6个项目所在欧盟成员国的CCS技术与政策环境的交互影响进行比对和分析,以进一步系统评述欧洲能源复兴计划CCS示范项目带来的积极成果,包括达成减排目标和气候政策,建立欧洲CCS示范项目网络共享平台,获得CCS技术研发突破等,同时也详细列举了这些项目目前所面临的阻碍与困境,如相关法律政策缺乏执行力,融资困难,公众接受度低,技术成本高等。最后,试探讨欧盟能源复兴计划CCS全流程示范项目实施发展现状对我国未来CCS商业化走向的思索与启示。展开更多
Capillary trapping prevents the migration of CO2 in reservoirs due to buoyancy. The residual gas saturation is strongly influenced by the gas saturation after gas injection. In this study, we have investigated the eff...Capillary trapping prevents the migration of CO2 in reservoirs due to buoyancy. The residual gas saturation is strongly influenced by the gas saturation after gas injection. In this study, we have investigated the effect of stratified structure of heterogeneous porous media on gas permeation and entrapment. Experiments were carried out at a laboratory condition for a nitrogen-water system with the packed beds of glass beads with various diameters which modeled stratified porous media. In the case of parallel structure, the injected gas selectively percolated into permeable layers. The gas permeation can hardly occur for the less permeable layers because of the capillary entrance pressure. In the case of serial structure, the interface of porous structure hindered the migration of gas across it, because of the capillary entrance pressure. When the gas percolated in the permeable layers, capillary fingering was developed in the layers. However, when the tip of finger reached the interface, fingers grew in tangential directions until the pressure built up to overcome the capillary entrance pressure. As a result, high gas saturation was achieved in the permeable layers of both upward and downward gas injections.展开更多
基金supported by the National Natural Science Foundation of China (21878056)Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2019Z002)。
文摘The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determine the Joule-Thomson effect of binary mixtures(CO_(2)+ H_(2)). The accuracy of the apparatus was verified by comparing with the experimental data of carbon dioxide. The Joule-Thomson coefficients(μ_(JT)) for(CO_(2)+ H_(2)) binary mixtures with mole fractions of carbon dioxide(x_(CO_(2))= 0.1, 0.26, 0.5,0.86, 0.94) along six isotherms at various pressures were measured. Five equations of state EOSs(PR,SRK, PR, BWR and GERG-2008 equation) were used to calculate the μ_(JT)for both pure systems and binary systems, among which the GERG-2008 predicted best with a wide range of pressure and temperature.Moreover, the Joule-Thomson inversion curves(JTIC) were calculated with five equations of state. A comparison was made between experimental data and predicted data for the inversion curve of CO_(2). The investigated EOSs show a similar prediction of the low-temperature branch of the JTIC for both pure and binary systems, except for the BWRS equation of state. Among all the equations, SRK has the most similar result to GERG-2008 for predicting JTIC.
文摘The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
文摘Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.
文摘The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO<sub>2</sub> emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO<sub>2</sub> on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO<sub>2</sub> storage. This stage involves primarily the adsorption of CO<sub>2</sub> in the ocean and the injection of CO<sub>2</sub> into subsurface reservoir formations. Additionally, the process of CO<sub>2</sub> reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO<sub>2</sub> into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO<sub>2</sub> injection and storage systems, with a specific focus on CO<sub>2</sub> storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO<sub>2</sub> thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance.
文摘Carbon dioxide (CO2) is the primary anthropogenic greenhouse gas (GHG). India’s CO2 emissions are expected to increase 70% by 2025. Geologic carbon storage (GCS) offers a way to reduce CO2 emissions. Here we present the results of a search for the most cost-effective GCS opportunities in India. Source-Sink matching for large and concentrated CO2 sources near geological storage in India indicates one very high priority target, a fertilizer plant in the city of Narmadanagar in Bharuch District of Gujarat Province, India that is <20 km from old oil and gas fields in the Cambay Basin. Two pure CO2 sources are <20 km from deep saline aquifers and one
文摘Too many climate committees, conferences, articles and publications continue to suggest a one and a half (1.5<span style="white-space:nowrap;">°</span>C) to two degrees (2<span style="white-space:nowrap;">°</span>C) Celsius as an achievable global limit to climate changes without establishment of any causal link to the proposed anti-warming mechanism. A comprehensive review has found instead that observationally informed projections of climate science underlying climate change offer a different outlook of five to six-degree (5<span style="white-space:nowrap;">°</span>C - 6<span style="white-space:nowrap;">°</span>C) increase as “most accurate” with regard to present trends, climate history and models, yielding the most likely outcome for 2100. The most causative triad for the present warming trend from 1950 to the present is identified in this paper: 1) the tripling (3×) of world population;2) the quadrupling (4×) of carbon emissions;and 3) the quintupling (5×) of the world energy consumption. This paper presents a quantitative, linear global temperature correlation to carbon dioxide levels that has great predictive value, a short temporal feedback loop, and the finding that it is also reversible. The Vostok ice core temperature and CO2 values for the past 400,000 years, with past sea level estimates have produced the sufficiently evidential “Hansen’s Graph”. Detailed analysis results in an equation for global average temperature change and an indebted, long-term sea level rise, from even a 20 ppm of CO2 change above 290 ppm, commonly taken as a baseline for levels before 1950. Comparison to the well-known 800,000 year old Dome C ice core is also performed. The best-performing climate change models and observational analysis are seen to project more warming than the average model often relied upon. World atmosphere, temperature, and sea level trends for 2100 and beyond are analyzed. A laboratory experiment proves the dramatic heat-entrapment capability of CO<sub>2</sub> compared to pure air, which yields insights into the future global atmospheric system. Policy-relevant climate remediation, including gigaton carbon capture, zero and negative emissions and positive individual action, are reviewed and updated, with recommendations.
文摘The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.
文摘碳捕集与封存(Carbon Capture and Storage,CCS)作为最有前景可有效深度减排的低碳技术之一,在世界范围内受到广泛推行,特别是欧洲,其作为全球CCS技术的先行者,一直在积极推进该项技术工业化进程。2009年,欧盟委员会(European Commission,EC)启动欧洲能源复兴计划(European Energy Programme for Recovery,EEPR),正式批准资助6个全流程CCS示范项目。这6个CCS示范项目囊括了当前所有可行的CO2工业捕集技术,运输方式以及封存方法,本文将对其基本情况和最近进展进行介绍,并重点对欧盟层面的CCS法律法规与此6个项目所在欧盟成员国的CCS技术与政策环境的交互影响进行比对和分析,以进一步系统评述欧洲能源复兴计划CCS示范项目带来的积极成果,包括达成减排目标和气候政策,建立欧洲CCS示范项目网络共享平台,获得CCS技术研发突破等,同时也详细列举了这些项目目前所面临的阻碍与困境,如相关法律政策缺乏执行力,融资困难,公众接受度低,技术成本高等。最后,试探讨欧盟能源复兴计划CCS全流程示范项目实施发展现状对我国未来CCS商业化走向的思索与启示。
文摘Capillary trapping prevents the migration of CO2 in reservoirs due to buoyancy. The residual gas saturation is strongly influenced by the gas saturation after gas injection. In this study, we have investigated the effect of stratified structure of heterogeneous porous media on gas permeation and entrapment. Experiments were carried out at a laboratory condition for a nitrogen-water system with the packed beds of glass beads with various diameters which modeled stratified porous media. In the case of parallel structure, the injected gas selectively percolated into permeable layers. The gas permeation can hardly occur for the less permeable layers because of the capillary entrance pressure. In the case of serial structure, the interface of porous structure hindered the migration of gas across it, because of the capillary entrance pressure. When the gas percolated in the permeable layers, capillary fingering was developed in the layers. However, when the tip of finger reached the interface, fingers grew in tangential directions until the pressure built up to overcome the capillary entrance pressure. As a result, high gas saturation was achieved in the permeable layers of both upward and downward gas injections.