Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ...Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a ...Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.展开更多
To reduce the emissions of carbon dioxide(CO) into the atmosphere, it is proposed to inject anthropogenic COinto deep geological formations. Deep un-mineable coalbeds are considered to be possible COrepositories becau...To reduce the emissions of carbon dioxide(CO) into the atmosphere, it is proposed to inject anthropogenic COinto deep geological formations. Deep un-mineable coalbeds are considered to be possible COrepositories because coal is able to adsorb a large amount of COinside its microporous structure.However, the response of coalbeds is complex because of coupled flow and mechanical processes. Injection of COcauses coal to swell, which leads to reductions in permeability and hence makes injection more difficult, and at the same time leads to changes in the mechanical properties which can affect the stress state in the coal and overlying strata. The mechanical properties of coal under storage conditions are of importance when assessing the integrity and safety of the storage scheme. On the other hand, the geomechanical response of coalbed will also influence the reservoir performance of coalbed. This paper provides an overview of processes associated with coalbed geosequestration of COwhile the importance of geomechanical characteristics of coalbeds is highlighted. The most recent findings about the interactions between gas transport and geomechanical characteristics of coal will be discussed and the essence will be delivered. The author suggests areas for future research efforts to further improve the understanding of enhanced coalbed methane(ECBM) and coalbed geosequestration of CO.展开更多
The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and inc...The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled COsequestration and geothermal energy production from hot dry rock(HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and COsequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential COstorage capacity if supercritical COis used as the working fluid for heat extraction. The analysis suggests that the major COsequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term COsequestration capacity of EGS in which supercritical COis used as the circulation fluid.展开更多
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between C...The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between CO_(2)and epoxides at low temperature and pressure is still a challenge.Herein,a series of polypyrazoles with glass transition temperature(T_(g))in the range of 42.3-52.5℃ were synthesized and served as catalyst to mediate the cycloaddition of CO_(2)and epoxides by the assistant of tetrabutylammonium bromide.The catalytic behaviors of polypyrazole on the model cycloaddition of CO_(2)to epichlorohydrin,including the reaction parameters optimization and versatility were investigated in detail,and excellent yield(99.9%)and selectivity(99%)were obtained under the optimized reaction conditions of70℃ and 1.0 MPa for 6.0 h.Noteworthily,the polypyrazole acts as homogeneous catalyst during reaction(higher than T_(g)).And under room temperature,polypyrazoles can be easily separated and recovered,which is a promising feature of a heterogeneous catalyst.Furthermore,the reaction mechanism was proposed.The DFT calculation suggested that the formation of hydrogen bond between pyrazole and epoxide greatly reduced the energy barrier,which play an important role in promoting CO_(2)cycloaddition.展开更多
It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in th...It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in the fault,pressure sensors,fiber Bragg grating(FBG)temperature and strain sensors were simultaneously used to monitor CO_(2)leakage in the fault.Ten experiments were carried out,including five groups of gaseous CO_(2)leakage tests with initial pressures of 1-5 MPa and five groups of liquid CO_(2)leakage tests with initial pressures of 6-10 MPa.The results indicate that when liquid CO_(2)leaked with an initial pressure of 7-10 MPa,the pressure and temperature of CO_(2)dropped rapidly in the first few seconds and then remained unchanged.The behavior that CO_(2)continues to leak while maintaining temperature and pressure unchanged is defined as“temporary pseudo-sealing(TPS)”behavior,which continues for the first 1/3 of the leakage period.However,this TPS behavior did not occur in gaseous CO_(2)leakage.If only the pressure and temperature data were used to evaluate whether CO_(2)leakage occurred,we would misjudge the risk of leakage in CCS projects during the TPS period.The causes and conditions of TPS behavior were further studied experimentally.The results show that:(1)TPS behavior is caused by the phase transition energy generated when liquid CO_(2)leaks.(2)The condition for TPS behavior is a small leak aperture(0.2 mm).Only a small leakage rate can make the phase transition energy and pressure change from a dynamic equilibrium,and(3)The compression zone caused by the Bernoulli effect and fault“barrier”could reduce the CO_(2)leakage rate and further promote the occurrence of TPS behavior.This study provides technical and theoretical support for the quantitative characterization of the CO_(2)leakage process in faults of CCS projects.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.展开更多
The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nonto...The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nontoxic and nonflammable solvents, and minimal by -product pollution. The resulting refined lanolin and its alcohol have light color and little odor, and can be used as raw materials for high grade cosmetic products.展开更多
基金financially supported by the National Natural Science Foundation of China(22176059,21777042,and 22076045)the authors would also like to acknowledge support from the Science and Technology Commission of Shanghai Municipality’s Yangfan Special Project(23YF1408400)the Fundamental Research Funds for the Central Universities.
文摘Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金the National Natural Science Foundation of China(Grant No.41274111)the Shenhua Group(Grant No.CSCLC-03-JS-2014-08)the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)
文摘Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.
文摘To reduce the emissions of carbon dioxide(CO) into the atmosphere, it is proposed to inject anthropogenic COinto deep geological formations. Deep un-mineable coalbeds are considered to be possible COrepositories because coal is able to adsorb a large amount of COinside its microporous structure.However, the response of coalbeds is complex because of coupled flow and mechanical processes. Injection of COcauses coal to swell, which leads to reductions in permeability and hence makes injection more difficult, and at the same time leads to changes in the mechanical properties which can affect the stress state in the coal and overlying strata. The mechanical properties of coal under storage conditions are of importance when assessing the integrity and safety of the storage scheme. On the other hand, the geomechanical response of coalbed will also influence the reservoir performance of coalbed. This paper provides an overview of processes associated with coalbed geosequestration of COwhile the importance of geomechanical characteristics of coalbeds is highlighted. The most recent findings about the interactions between gas transport and geomechanical characteristics of coal will be discussed and the essence will be delivered. The author suggests areas for future research efforts to further improve the understanding of enhanced coalbed methane(ECBM) and coalbed geosequestration of CO.
基金funded by Australian Research Council Discovery Project(Grant No.DP110104766)financial support from the China Australia Geological Storage of CO_2 Project(CAGS)Australia-China Young Researchers Exchange Program 2012
文摘The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled COsequestration and geothermal energy production from hot dry rock(HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and COsequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential COstorage capacity if supercritical COis used as the working fluid for heat extraction. The analysis suggests that the major COsequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term COsequestration capacity of EGS in which supercritical COis used as the circulation fluid.
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
基金financially supported by the National Natural Science Foundation of China(21504025)the Natural Science Foundation of Fujian Province(2019J05040)+4 种基金Fujian Provincial Department of Education(JT180038)Key Program of Qingyuan Innovation Laboratory(00221003)Fuzhou University Testing Fund of precious apparatus(2021T022)Talent Program(GXRC18041)Higher Education Disciplinary Innovation Program(‘111’Program)of Fuzhou University。
文摘The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between CO_(2)and epoxides at low temperature and pressure is still a challenge.Herein,a series of polypyrazoles with glass transition temperature(T_(g))in the range of 42.3-52.5℃ were synthesized and served as catalyst to mediate the cycloaddition of CO_(2)and epoxides by the assistant of tetrabutylammonium bromide.The catalytic behaviors of polypyrazole on the model cycloaddition of CO_(2)to epichlorohydrin,including the reaction parameters optimization and versatility were investigated in detail,and excellent yield(99.9%)and selectivity(99%)were obtained under the optimized reaction conditions of70℃ and 1.0 MPa for 6.0 h.Noteworthily,the polypyrazole acts as homogeneous catalyst during reaction(higher than T_(g)).And under room temperature,polypyrazoles can be easily separated and recovered,which is a promising feature of a heterogeneous catalyst.Furthermore,the reaction mechanism was proposed.The DFT calculation suggested that the formation of hydrogen bond between pyrazole and epoxide greatly reduced the energy barrier,which play an important role in promoting CO_(2)cycloaddition.
基金The research was partially supported by the Major Project of Inner Mongolia Science and Technology(Grant No.2021ZD0034)the National Natural Science Foundation of China(Grant Nos.41872210 and 41274111)The equipment and methodology we have developed for this research have applied for a national invention patent(ZL 202110708668.1).
文摘It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in the fault,pressure sensors,fiber Bragg grating(FBG)temperature and strain sensors were simultaneously used to monitor CO_(2)leakage in the fault.Ten experiments were carried out,including five groups of gaseous CO_(2)leakage tests with initial pressures of 1-5 MPa and five groups of liquid CO_(2)leakage tests with initial pressures of 6-10 MPa.The results indicate that when liquid CO_(2)leaked with an initial pressure of 7-10 MPa,the pressure and temperature of CO_(2)dropped rapidly in the first few seconds and then remained unchanged.The behavior that CO_(2)continues to leak while maintaining temperature and pressure unchanged is defined as“temporary pseudo-sealing(TPS)”behavior,which continues for the first 1/3 of the leakage period.However,this TPS behavior did not occur in gaseous CO_(2)leakage.If only the pressure and temperature data were used to evaluate whether CO_(2)leakage occurred,we would misjudge the risk of leakage in CCS projects during the TPS period.The causes and conditions of TPS behavior were further studied experimentally.The results show that:(1)TPS behavior is caused by the phase transition energy generated when liquid CO_(2)leaks.(2)The condition for TPS behavior is a small leak aperture(0.2 mm).Only a small leakage rate can make the phase transition energy and pressure change from a dynamic equilibrium,and(3)The compression zone caused by the Bernoulli effect and fault“barrier”could reduce the CO_(2)leakage rate and further promote the occurrence of TPS behavior.This study provides technical and theoretical support for the quantitative characterization of the CO_(2)leakage process in faults of CCS projects.
基金This project was supported by the National Natural Science Foundation of China(U19A2017,22272206,51976143)Natural Science Foundation of Hunan Province(S2021JJMSXM3153).
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.
基金Science Foundation of National Education Commission(99053)
文摘The use of supercritical fluid carbon dioxide (SFCO2) in extraction of lanolin and its alcohol is superior to the conventional solvent extraction method. Its distinctive advantages include high extractive ratio, nontoxic and nonflammable solvents, and minimal by -product pollution. The resulting refined lanolin and its alcohol have light color and little odor, and can be used as raw materials for high grade cosmetic products.