Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commer...Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year.Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the‘fertilisation effect’that leads to enhanced photosynthesis.To examine if acorn production in mature woodland communities will be affected by further increase in CO_(2),the contents of litter traps from a Free Air Carbon Enrichment(FACE)experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak(Quercus robur L.)at different stages of development and their predation levels under ambient and elevated CO_(2) concentrations.Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021,with the greatest numbers of mature acorns in 2015,2017 and 2020 but almost none in 2018.The numbers of flowers,enlarged cups,immature acorns,empty acorn cups,and galls in the litter traps also varied amongst years;comparatively high numbers of enlarged cups were recorded in 2018,suggesting Q.robur at this site is a fruit maturation masting species(i.e.,the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly).Raising the atmospheric CO_(2) concentration by 150μL L^(−1),from early 2017,increased the numbers of immature acorns,and all acorn evidence(empty cups+immature acorns+mature acorns)detected in the litter traps compared to ambient controls by 2021,but did not consistently affect the numbers of flowers,enlarged cups,empty cups,or mature acorns.The number of flowers in the elevated CO_(2) plots’litter traps was greater in 2018 than 2017,one year after CO_(2) enrichment began,whereas numbers declined in ambient plots.Enrichment with CO_(2) also increased the number of oak knopper galls(Andricus quercuscalicis Burgsdorf).We conclude that elevated CO_(2) increased the occurrence of acorns developing from flowers,but the putative benefit to mature acorn numbers may have been hidden by excessive pre-and/or post-dispersal predation.There was no evidence that elevated CO_(2) altered masting behaviour.展开更多
The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challen...The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challenges and work toward carbon(C)neutrality and reduced CO_(2)emissions,the capture and utilization of CO_(2)have become imperative in both scientific research and industry.One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion.This innovative strategy offers several advantages,including environmental friendliness,high efficiency,and multi-selectivity.This study provides a comprehensive review of existing technical routes for carbon sequestration(CS)and introduces two novel CS pathways:the electrochemicalbiological hybrid and artificial photosynthesis systems.It also thoroughly examines the synthesis of valuable Cnproducts from the two CS systems employing different catalysts and biocatalysts.As both systems heavily rely on electron transfer,direct and mediated electron transfer has been discussed and summarized in detail.Additionally,this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts.We also explored the biocompatibility of the electrode materials and developed novel materials.These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem,while improving the electron transfer efficiency of both.Furthermore,this review summarizes the relevant systems developed in recent years for manufacturing different products,along with their respective production efficiencies,providing a solid database for development in this direction.The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO_(2)into advanced organic compounds.Additionally,it offers exciting prospects for utilizing CO_(2)in synthesizing a wide range of industrial products.Ultimately,the present study provides a unique perspective for achieving the vital goals of“peak shaving”and C-neutrality,contributing significantly to our collective efforts to combat climate change and its associated challenges.展开更多
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra...Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.展开更多
Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ...Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.展开更多
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho...Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.展开更多
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industri...The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industrial application.The breakthrough understanding of CO_(2) flooding mechanism and field practice in recent years and the corresponding supporting technical achievements of CCUS-EOR project are systematically described.The future development prospects are also pointed out.After nearly 60 years of exploration,the theory of CO_(2) flooding and storage suitable for continental sedimentary reservoirs in China has been innovatively developed.It is suggested that C7–C15 are also important components affecting miscibility of CO_(2) and crude oil.The mechanism of rapid recovery of formation energy by CO_(2) and significant improvement of block productivity and recovery factor has been verified in field tests.The CCUS-EOR reservoir engineering design technology for continental sedimentary reservoir is established.The technology of reservoir engineering parameter design and well spacing optimization has been developed,which focuses on maintaining miscibility to improve oil displacement efficiency and uniform displacement to improve sweep efficiency.The technology of CO_(2) capture,injection and production process,whole-system anticorrosion,storage monitoring and other whole-process supporting technologies have been initially formed.In order to realize the efficient utilization and permanent storage of CO_(2),it is necessary to take the oil reservoir in the oil-water transition zone into consideration,realize the large-scale CO_(2) flooding and storage in the area from single reservoir to the overall structural control system.The oil reservoir in the oil-water transition zone is developed by stable gravity flooding of injecting CO_(2) from structural highs.The research on the storage technology such as the conversion of residual oil and CO_(2) into methane needs to be carried out.展开更多
CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy...CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage.展开更多
Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focu...Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated.展开更多
Perilla frutescens seed (PFS) oil is reported to inhibit skin photoaging;however, its effect on melanogenesis has not yet been investigated. Herein, we tested the anti-melanogenesis activity of an oil-based extract fr...Perilla frutescens seed (PFS) oil is reported to inhibit skin photoaging;however, its effect on melanogenesis has not yet been investigated. Herein, we tested the anti-melanogenesis activity of an oil-based extract from PFS with supercritical carbon dioxide (scCO<sub>2</sub>). In a cell culture system, B16 mouse melanoma cells were treated with the PFS scCO<sub>2</sub> extract and other samples. The PFS scCO<sub>2</sub> extract decreased melanin production by approximately 90% in B16 mouse melanoma cells without cytotoxicity at 100 μg/mL. This effect was greater than that of the well-known melanogenesis inhibitor, kojic acid. Although a hexane-extracted PFS oil and a squeezed PFS oil also decreased melanin production in the B16 cells, the inhibitory effect of the PFS scCO<sub>2</sub> extract was higher than both of these. Chemical analysis of the PFS scCO<sub>2</sub> extract and squeezed PFS oil showed that almost 90% of the components of both oils were α-linolenic acid, linoleic acid, and oleic acid. Furthermore, the ratio of those three fatty acids across both samples was almost the same. When the three fatty acids were mixed in the same ratio as in the PFS scCO<sub>2</sub> extract, the IC<sub>50</sub> of the mixture for melanin production in B16 melanoma cells was identical to that of the PFS scCO<sub>2</sub> extract. However, the IC<sub>50</sub> of the squeezed PFS oil was approximately 6.6 times higher than that of the mixture. Although those fatty acids are the main inhibitory ingredients against melanin production in all of the extracts, some factor(s) in the squeezed PFS reduce their affinity with the cells. These results indicated that the PFS scCO<sub>2</sub> extract could be a superior melanogenesis inhibitor. Although its main ingredients are probably the same as those of the squeezed PFS oil, it is necessary to extract with scCO<sub>2</sub> for stronger anti-melanogenesis activity.展开更多
Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum ...Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.展开更多
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction...Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.展开更多
The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(...The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.展开更多
Environmental degradation and the emission of greenhouse gases particularly carbon dioxide have expanded problems to human wellness and to the atmosphere. The second-most populated country in the globe, India, is amon...Environmental degradation and the emission of greenhouse gases particularly carbon dioxide have expanded problems to human wellness and to the atmosphere. The second-most populated country in the globe, India, is among the primary users of conventional resources, which leads to global warming. The growth rate is anticipated to raise more before 2050, which will cause the brisk industrial expansion and rising energy demand to both increases. In order to reduce carbon emissions and meet energy requirements, many countries use alternate usage of renewable energy particularly solar energy. In this review we aim to study solar panel schemes initiated by India, mainly focusing on National Solar Mission. This study also reviews the present solar installed capacity, solar panel scheme 2022, and initiatives and outcomes of solar panels in residences and offices. This study reviewed that by using solar panel resources, the (MNRE) Ministry of New and Renewable Energy hopes to help the Indian Government reach its purpose of 100 GW solar installed capacity by end of 2022. Despite having an amazing 40 GW of solar power installed capacity till December 2021, India is still far from reaching its own goal of 100 GW by March 2023 as per NSM. In essence, this means that India will need to change a few of its ongoing plans further.展开更多
Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimenta...Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.展开更多
As an emerging waterless fracturing technology,supercritical carbon dioxide(SC-CO_(2))fracturing can reduce reservoir damage and dependence on water resources,and can also promote the reservoir stimulation and geologi...As an emerging waterless fracturing technology,supercritical carbon dioxide(SC-CO_(2))fracturing can reduce reservoir damage and dependence on water resources,and can also promote the reservoir stimulation and geological storage of carbon dioxide(CO_(2)).It is vital to figure out the laws in SC-CO_(2)fracturing for the large-scale field implementation of this technology.This paper reviews the numerical simulations of wellbore flow and heat transfer,fracture initiation and propagation,and proppant transport in SC-CO_(2)fracturing,including the numerical approaches and the obtained findings.It shows that the variations of wellbore temperature and pressure are complex and strongly transient.The wellhead pressure can be reduced by tubing and annulus co-injection or adding drag reducers into the fracturing fluid.Increasing the temperature of CO_(2)with wellhead heating can promote CO_(2)to reach the well bottom in the supercritical state.Compared with hydraulic fracturing,SC-CO_(2)fracturing has a lower fracture initiation pressure and can form a more complex fracture network,but the fracture width is narrower.The technology of SC-CO_(2)fracturing followed by thickened SC-CO_(2)fracturing,which combines with high injection rates and ultra-light proppants,can improve the placement effect of proppants while improving the complexity and width of fractures.The follow-up research is required to get a deeper insight into the SC-CO_(2)fracturing mechanisms and develop cost-effective drag reducers,thickeners,and ultra-light proppants.This paper can guide further research and promote the field application of SC-CO_(2)fracturing technology.展开更多
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin...Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.展开更多
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf...CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.展开更多
基金supported by Future Trees Trust,The Patsy Wood Trust,Scottish Forestry Trust,Aitchinson Tait Trust,and Action Oak for fundingsupport from the UK Natural Environment Research Council (NE/S015833/1 (QUINTUS))+1 种基金support from the JABBS Trust,Norbury Park Estate,The John Horseman Trust,Ecological Continuity Trust,and the University of BirminghamAccess to BIFoR Core Data was funded by Royal Society University Research Fellowship URFR1191326
文摘Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year.Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the‘fertilisation effect’that leads to enhanced photosynthesis.To examine if acorn production in mature woodland communities will be affected by further increase in CO_(2),the contents of litter traps from a Free Air Carbon Enrichment(FACE)experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak(Quercus robur L.)at different stages of development and their predation levels under ambient and elevated CO_(2) concentrations.Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021,with the greatest numbers of mature acorns in 2015,2017 and 2020 but almost none in 2018.The numbers of flowers,enlarged cups,immature acorns,empty acorn cups,and galls in the litter traps also varied amongst years;comparatively high numbers of enlarged cups were recorded in 2018,suggesting Q.robur at this site is a fruit maturation masting species(i.e.,the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly).Raising the atmospheric CO_(2) concentration by 150μL L^(−1),from early 2017,increased the numbers of immature acorns,and all acorn evidence(empty cups+immature acorns+mature acorns)detected in the litter traps compared to ambient controls by 2021,but did not consistently affect the numbers of flowers,enlarged cups,empty cups,or mature acorns.The number of flowers in the elevated CO_(2) plots’litter traps was greater in 2018 than 2017,one year after CO_(2) enrichment began,whereas numbers declined in ambient plots.Enrichment with CO_(2) also increased the number of oak knopper galls(Andricus quercuscalicis Burgsdorf).We conclude that elevated CO_(2) increased the occurrence of acorns developing from flowers,but the putative benefit to mature acorn numbers may have been hidden by excessive pre-and/or post-dispersal predation.There was no evidence that elevated CO_(2) altered masting behaviour.
基金supported by the National Key R&D Program of China(2018YFA0901700)the National Natural Science Foundation of China(31970038,22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)the Department of Chemical Engineering-i BHE Joint Cooperation Fund。
文摘The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challenges and work toward carbon(C)neutrality and reduced CO_(2)emissions,the capture and utilization of CO_(2)have become imperative in both scientific research and industry.One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion.This innovative strategy offers several advantages,including environmental friendliness,high efficiency,and multi-selectivity.This study provides a comprehensive review of existing technical routes for carbon sequestration(CS)and introduces two novel CS pathways:the electrochemicalbiological hybrid and artificial photosynthesis systems.It also thoroughly examines the synthesis of valuable Cnproducts from the two CS systems employing different catalysts and biocatalysts.As both systems heavily rely on electron transfer,direct and mediated electron transfer has been discussed and summarized in detail.Additionally,this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts.We also explored the biocompatibility of the electrode materials and developed novel materials.These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem,while improving the electron transfer efficiency of both.Furthermore,this review summarizes the relevant systems developed in recent years for manufacturing different products,along with their respective production efficiencies,providing a solid database for development in this direction.The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO_(2)into advanced organic compounds.Additionally,it offers exciting prospects for utilizing CO_(2)in synthesizing a wide range of industrial products.Ultimately,the present study provides a unique perspective for achieving the vital goals of“peak shaving”and C-neutrality,contributing significantly to our collective efforts to combat climate change and its associated challenges.
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2022YFC3105000)the Youth Innovation Promotion Association of CAS (2022074)+3 种基金the National Natural Science Foundation of China (Grant Nos. 42005123, 42275173 and 41706028)the National Key Research and Development Program of China(2022YFE0106500)the 7th Youth Talent Support Project of Ningxia Hui Autonomous Region Association for Science and TechnologyNational Key Scientific and Technological Infrastructure project ‘‘Earth System Science Numerical Simulator Facility’’(EarthLab) for supporting the simulations in this study
文摘Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.
基金financially supported by the National Natural Science Foundation of China(22176059,21777042,and 22076045)the authors would also like to acknowledge support from the Science and Technology Commission of Shanghai Municipality’s Yangfan Special Project(23YF1408400)the Fundamental Research Funds for the Central Universities.
文摘Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.
基金supported by the Shandong Province Natural Science Foundation Youth Branch(ZR2023QC157)the National Natural Science Foundation of China(51979233)+1 种基金the Key Research and Development Project of Shaanxi Province(2022KW-47,2022NY-220)the Heze University Doctoral Research Fund(XY21BS24,XY22BS17).
文摘Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously.
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
基金Supported by the China National Science and Technology Major Project(2016ZX05016).
文摘The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industrial application.The breakthrough understanding of CO_(2) flooding mechanism and field practice in recent years and the corresponding supporting technical achievements of CCUS-EOR project are systematically described.The future development prospects are also pointed out.After nearly 60 years of exploration,the theory of CO_(2) flooding and storage suitable for continental sedimentary reservoirs in China has been innovatively developed.It is suggested that C7–C15 are also important components affecting miscibility of CO_(2) and crude oil.The mechanism of rapid recovery of formation energy by CO_(2) and significant improvement of block productivity and recovery factor has been verified in field tests.The CCUS-EOR reservoir engineering design technology for continental sedimentary reservoir is established.The technology of reservoir engineering parameter design and well spacing optimization has been developed,which focuses on maintaining miscibility to improve oil displacement efficiency and uniform displacement to improve sweep efficiency.The technology of CO_(2) capture,injection and production process,whole-system anticorrosion,storage monitoring and other whole-process supporting technologies have been initially formed.In order to realize the efficient utilization and permanent storage of CO_(2),it is necessary to take the oil reservoir in the oil-water transition zone into consideration,realize the large-scale CO_(2) flooding and storage in the area from single reservoir to the overall structural control system.The oil reservoir in the oil-water transition zone is developed by stable gravity flooding of injecting CO_(2) from structural highs.The research on the storage technology such as the conversion of residual oil and CO_(2) into methane needs to be carried out.
基金National Key Research&Development Project,Grant/Award Number:2017YFE0129300Ningbo Science and Technology Innovation 2025 Major Project,Grant/Award Numbers:2019B10046,2020Z107+2 种基金Zhejiang Provincial Key R&D Program,Grant/Award Number:2021C01101National Natural Science Foundation of China,Grant/Award Numbers:U20A20251,11932005The from 0 to 1 Innovative Program of CAS,Grant/Award Number:ZDBS-LY-JSC021。
文摘CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage.
基金Natural Science Foundation of Jiangsu Province(BK20210185)National Natural Science Foundation of China(22278202).
文摘Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated.
文摘Perilla frutescens seed (PFS) oil is reported to inhibit skin photoaging;however, its effect on melanogenesis has not yet been investigated. Herein, we tested the anti-melanogenesis activity of an oil-based extract from PFS with supercritical carbon dioxide (scCO<sub>2</sub>). In a cell culture system, B16 mouse melanoma cells were treated with the PFS scCO<sub>2</sub> extract and other samples. The PFS scCO<sub>2</sub> extract decreased melanin production by approximately 90% in B16 mouse melanoma cells without cytotoxicity at 100 μg/mL. This effect was greater than that of the well-known melanogenesis inhibitor, kojic acid. Although a hexane-extracted PFS oil and a squeezed PFS oil also decreased melanin production in the B16 cells, the inhibitory effect of the PFS scCO<sub>2</sub> extract was higher than both of these. Chemical analysis of the PFS scCO<sub>2</sub> extract and squeezed PFS oil showed that almost 90% of the components of both oils were α-linolenic acid, linoleic acid, and oleic acid. Furthermore, the ratio of those three fatty acids across both samples was almost the same. When the three fatty acids were mixed in the same ratio as in the PFS scCO<sub>2</sub> extract, the IC<sub>50</sub> of the mixture for melanin production in B16 melanoma cells was identical to that of the PFS scCO<sub>2</sub> extract. However, the IC<sub>50</sub> of the squeezed PFS oil was approximately 6.6 times higher than that of the mixture. Although those fatty acids are the main inhibitory ingredients against melanin production in all of the extracts, some factor(s) in the squeezed PFS reduce their affinity with the cells. These results indicated that the PFS scCO<sub>2</sub> extract could be a superior melanogenesis inhibitor. Although its main ingredients are probably the same as those of the squeezed PFS oil, it is necessary to extract with scCO<sub>2</sub> for stronger anti-melanogenesis activity.
基金the funding support from Shanghai Sailing Program (19YF1411000)National Natural Science Foundation of China (21878080, 21808058)Ningxia Science Foundation (2019AAC03282)。
文摘Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.
基金This project was supported by the National Natural Science Foundation of China(U19A2017,22272206,51976143)Natural Science Foundation of Hunan Province(S2021JJMSXM3153).
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (RS-2023-00210114)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1004264 and NRF2021R1A4A1032114)+1 种基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-2022R1A4A1019296)supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2021M3D1A2051636)。
文摘Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 22105087)Natural Science Foundation of Jiangsu Province (Grant No. BK20210446)。
文摘The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.
文摘Environmental degradation and the emission of greenhouse gases particularly carbon dioxide have expanded problems to human wellness and to the atmosphere. The second-most populated country in the globe, India, is among the primary users of conventional resources, which leads to global warming. The growth rate is anticipated to raise more before 2050, which will cause the brisk industrial expansion and rising energy demand to both increases. In order to reduce carbon emissions and meet energy requirements, many countries use alternate usage of renewable energy particularly solar energy. In this review we aim to study solar panel schemes initiated by India, mainly focusing on National Solar Mission. This study also reviews the present solar installed capacity, solar panel scheme 2022, and initiatives and outcomes of solar panels in residences and offices. This study reviewed that by using solar panel resources, the (MNRE) Ministry of New and Renewable Energy hopes to help the Indian Government reach its purpose of 100 GW solar installed capacity by end of 2022. Despite having an amazing 40 GW of solar power installed capacity till December 2021, India is still far from reaching its own goal of 100 GW by March 2023 as per NSM. In essence, this means that India will need to change a few of its ongoing plans further.
基金funded by the National Natural Science Foundation of China(Grant Nos.42141009,41825018,41888101 and 41902289)the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant No.IGGCAS-202201)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.
基金funded by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)the China Scholarship Council(No.202208080058).
文摘As an emerging waterless fracturing technology,supercritical carbon dioxide(SC-CO_(2))fracturing can reduce reservoir damage and dependence on water resources,and can also promote the reservoir stimulation and geological storage of carbon dioxide(CO_(2)).It is vital to figure out the laws in SC-CO_(2)fracturing for the large-scale field implementation of this technology.This paper reviews the numerical simulations of wellbore flow and heat transfer,fracture initiation and propagation,and proppant transport in SC-CO_(2)fracturing,including the numerical approaches and the obtained findings.It shows that the variations of wellbore temperature and pressure are complex and strongly transient.The wellhead pressure can be reduced by tubing and annulus co-injection or adding drag reducers into the fracturing fluid.Increasing the temperature of CO_(2)with wellhead heating can promote CO_(2)to reach the well bottom in the supercritical state.Compared with hydraulic fracturing,SC-CO_(2)fracturing has a lower fracture initiation pressure and can form a more complex fracture network,but the fracture width is narrower.The technology of SC-CO_(2)fracturing followed by thickened SC-CO_(2)fracturing,which combines with high injection rates and ultra-light proppants,can improve the placement effect of proppants while improving the complexity and width of fractures.The follow-up research is required to get a deeper insight into the SC-CO_(2)fracturing mechanisms and develop cost-effective drag reducers,thickeners,and ultra-light proppants.This paper can guide further research and promote the field application of SC-CO_(2)fracturing technology.
基金supported by the National Natural Science Foundation of China(21902097,21636006 and 21761132025)the China Postdoctoral Science Foundation(2019M653861XB)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JQ-409)the Fundamental Research Funds for the Central Universities(GK201901001 and GK202003035)。
文摘Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.
基金supported by the National Natural Science Foundation of China(21978092)Chenguang Program by Educational Administration of Shanghai(21CGA35)Yangfan Program by Scientifical Administration of Shanghai(22YF1410300).
文摘CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.