With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are...With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.展开更多
A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas dif...A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas diffusion flux through the membrane.High-porosity ceramic membranes in hybrid systems are used for gas-solid separation in fuel gas treatment.Due to the high content of H_(2)O and cement dust in the flue gas of the cement plant,the membrane is hydrophobically modified by polytetrafluoroethylene(PTFE)to improve its anti-water,anti-fouling,and self-cleaning performances.The results show that the diffusion flux of CO_(2) through the membrane is still higher than 7.0×10^(−3) mol/m^(2)s(20%CO_(2) concentration)even under the influence of water and cement dust.In addition,slaked lime selected as the absorbent is cheap and the product after bubbling absorption is nano-scale light calcium carbonate.To sum up,the hybrid system combining non-contact membrane and bubbling absorption is expected to be used to capture carbon dioxide from the flue gas of the cement plant.展开更多
Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the ...Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.展开更多
Ni/CeO_(2) catalysts(nCeO_(2):n_(Ni)=0,1,4,7,10)supported on SiC porous ce ramics for ethanol steam reforming(ESR)were investigated with respect to hydrogen production performance and growth of carbon deposition.The o...Ni/CeO_(2) catalysts(nCeO_(2):n_(Ni)=0,1,4,7,10)supported on SiC porous ce ramics for ethanol steam reforming(ESR)were investigated with respect to hydrogen production performance and growth of carbon deposition.The oxygen released from CeO_(2) enables the oxidation of CH_(x) species to serve as carbon precursors,thus providing Ni/CeO_(2) catalysts with stronger resistance to carbon deposition compared with Ni catalysts.The Ni/CeO_(2) catalysts prepared by inverse microemulsion and impregnation methods exhibit regular semicircular spherical shape on SiC porous ceramics.Under 500℃for 25 h of ESR reaction,the ethanol conversion rate over Ni/CeO_(2) catalysts(n_(CeO_(2)):n_(Ni)=7)is sustained up to 100%and H_(2) selectivity is essentially kept at 74%.The by-product selectivity declines stepwise with increasing content of CeO_(2),which is attributed to the adsorption and oxidation of CO and of CH_(x) species as CH_4 precursor from CeO_(2).The scanning electron microscopy(SEM)and transform electron microscopy(TEM)results reveal that further loading of CeO_(2) on the surface of Ni catalysts can alleviate both migration and sintering of Ni particles.Furthermore,carbon deposition on Ni/CeO_(2) catalysts preferentially outgrow filamentous rather than amorphous carbon,with a tendency for the latter to be more deactivated.展开更多
文摘With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.
文摘A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas diffusion flux through the membrane.High-porosity ceramic membranes in hybrid systems are used for gas-solid separation in fuel gas treatment.Due to the high content of H_(2)O and cement dust in the flue gas of the cement plant,the membrane is hydrophobically modified by polytetrafluoroethylene(PTFE)to improve its anti-water,anti-fouling,and self-cleaning performances.The results show that the diffusion flux of CO_(2) through the membrane is still higher than 7.0×10^(−3) mol/m^(2)s(20%CO_(2) concentration)even under the influence of water and cement dust.In addition,slaked lime selected as the absorbent is cheap and the product after bubbling absorption is nano-scale light calcium carbonate.To sum up,the hybrid system combining non-contact membrane and bubbling absorption is expected to be used to capture carbon dioxide from the flue gas of the cement plant.
基金The authors would like to thank the National Key R&D Program of China(2017YFB0304000)National Natural Science Foundation of China(51932008,51772277)Central China Thousand Talents Project(2042005100111).
文摘Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.
基金Project supported by the Natural Science Foundation of Hunan Province,China (2022JJ30133)。
文摘Ni/CeO_(2) catalysts(nCeO_(2):n_(Ni)=0,1,4,7,10)supported on SiC porous ce ramics for ethanol steam reforming(ESR)were investigated with respect to hydrogen production performance and growth of carbon deposition.The oxygen released from CeO_(2) enables the oxidation of CH_(x) species to serve as carbon precursors,thus providing Ni/CeO_(2) catalysts with stronger resistance to carbon deposition compared with Ni catalysts.The Ni/CeO_(2) catalysts prepared by inverse microemulsion and impregnation methods exhibit regular semicircular spherical shape on SiC porous ceramics.Under 500℃for 25 h of ESR reaction,the ethanol conversion rate over Ni/CeO_(2) catalysts(n_(CeO_(2)):n_(Ni)=7)is sustained up to 100%and H_(2) selectivity is essentially kept at 74%.The by-product selectivity declines stepwise with increasing content of CeO_(2),which is attributed to the adsorption and oxidation of CO and of CH_(x) species as CH_4 precursor from CeO_(2).The scanning electron microscopy(SEM)and transform electron microscopy(TEM)results reveal that further loading of CeO_(2) on the surface of Ni catalysts can alleviate both migration and sintering of Ni particles.Furthermore,carbon deposition on Ni/CeO_(2) catalysts preferentially outgrow filamentous rather than amorphous carbon,with a tendency for the latter to be more deactivated.