To measure the carbon emission efficiency of China’s pharmaceutical manufacturing industry, explore the factors affecting the carbon emission efficiency of China’s pharmaceutical manufacturing industry, and provide ...To measure the carbon emission efficiency of China’s pharmaceutical manufacturing industry, explore the factors affecting the carbon emission efficiency of China’s pharmaceutical manufacturing industry, and provide reference for improving the carbon emission efficiency of China’s pharmaceutical manufacturing industry and promoting the government to formulate macro policies. Based on the data of the pharmaceutical manufacturing industry in 30 provinces of China from 2010 to 2019, and based on the SBM model and ML (Malmquist-Luenberger) index model, the carbon emission efficiency of the pharmaceutical manufacturing industry was calculated and its dynamic change was investigated, and the Tobit model was further used to explore the influencing factors of the carbon emission efficiency of the pharmaceutical manufacturing industry. The carbon emission efficiency of China’s inter-provincial pharmaceutical manufacturing industry has steadily improved. The carbon emission efficiency of the eastern region is higher than that of the western region, and that of the western region is higher than that of the central region. The eastern region is dominated by technological progress, and there is room for improvement in technological efficiency. The central and western regions are dominated by technological efficiency. Compared with technological efficiency, technological progress needs to be further improved. Environmental regulation, industrial agglomeration and technological innovation level positively affect carbon emission efficiency, while foreign investment level has no significant impact on carbon emission efficiency.展开更多
This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute...This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute β convergence and a conditional β convergence model,to conduct an in-depth analysis of dynamic changes and spatial convergence.Carbon emission efficiency of forest processing industries in 25 regions,including Shanghai,Chongqing,Zhejiang,and Jiangsu are increasing,whereas those of Tianjin,Liaoning,Heilongjiang,and Tibet are decreasing.The main contributing factors of carbon emission efficiency in three major regions vary over time.Further,carbon emission efficiency in the eastern,central,and western regions all have absolute β convergence and conditional β convergence,indicating that different regions are developing toward their own goals and industry,yet regions with lower efficiency are catching up with those where with more efficient strategies in place.Finally,this paper proposes according recommendations.展开更多
Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the ...Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the carbon emissions and global value chain position of China's manufacturing industry was studied based on the improved STIRPAT model. The results show that the improvement of global value chain position could significantly reduce the carbon emissions of China's manufacturing industry. In addition,foreign investment and energy structure hindered the low-carbon development of China's manufacturing industry. The effects of population size and research intensity on the carbon emissions of manufacturing industry were not significant. In the process of participating in the global value chain,China's manufacturing industry should effectively reduce carbon emissions by strengthening environmental regulation,optimizing energy structure and improving production technology.展开更多
Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will hel...Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.展开更多
This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emis...This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emission trends in Jilin Province at subdivided industrial level through Log-Mean Divisia Index (LMDI) method. Results showed that manufacturing carbon emissions of Jilin Province increased 1.304 ~ 107t by 66% between 2004 and 2010. However, 2012 was a remarkable year in which carbon emissions decreased compared with 2011, the first fall since 2004. Industrial activity was the most important factor for the increase of carbon emissions, while energy intensity had the greatest impact on inhibiting carbon emission growth. Despite the impact of industrial structure on carbon emissions fluctuated, its overall trend inhibited carbon emission growth. Further, influences of industrial structure became gradually stronger and surpassed energy intensity in the period 2009-2010. These results conclude that reducing energy intensity is still the main way for carbon emission reduction in Jilin Province, hut industrial structure can not be ignored and it has great potential. Based on the analyses, the way of manufacturing industrial structure adjustment for Jilin Province is put forward.展开更多
文摘To measure the carbon emission efficiency of China’s pharmaceutical manufacturing industry, explore the factors affecting the carbon emission efficiency of China’s pharmaceutical manufacturing industry, and provide reference for improving the carbon emission efficiency of China’s pharmaceutical manufacturing industry and promoting the government to formulate macro policies. Based on the data of the pharmaceutical manufacturing industry in 30 provinces of China from 2010 to 2019, and based on the SBM model and ML (Malmquist-Luenberger) index model, the carbon emission efficiency of the pharmaceutical manufacturing industry was calculated and its dynamic change was investigated, and the Tobit model was further used to explore the influencing factors of the carbon emission efficiency of the pharmaceutical manufacturing industry. The carbon emission efficiency of China’s inter-provincial pharmaceutical manufacturing industry has steadily improved. The carbon emission efficiency of the eastern region is higher than that of the western region, and that of the western region is higher than that of the central region. The eastern region is dominated by technological progress, and there is room for improvement in technological efficiency. The central and western regions are dominated by technological efficiency. Compared with technological efficiency, technological progress needs to be further improved. Environmental regulation, industrial agglomeration and technological innovation level positively affect carbon emission efficiency, while foreign investment level has no significant impact on carbon emission efficiency.
文摘This paper uses an input-output table of China's provinces(2007-2016) to measure carbon emissions of these industries.It employs a Malmquist-Luenberger(ML) index with expected and undesired outputs,and an absolute β convergence and a conditional β convergence model,to conduct an in-depth analysis of dynamic changes and spatial convergence.Carbon emission efficiency of forest processing industries in 25 regions,including Shanghai,Chongqing,Zhejiang,and Jiangsu are increasing,whereas those of Tianjin,Liaoning,Heilongjiang,and Tibet are decreasing.The main contributing factors of carbon emission efficiency in three major regions vary over time.Further,carbon emission efficiency in the eastern,central,and western regions all have absolute β convergence and conditional β convergence,indicating that different regions are developing toward their own goals and industry,yet regions with lower efficiency are catching up with those where with more efficient strategies in place.Finally,this paper proposes according recommendations.
基金Supported by the National Social Science Foundation of China(14BJL081)National Natural Science Foundation of China(41771173)
文摘Based on the input-output data from the World Input-Output Database( WIOD),the global value chain( GVC) position of China's manufacturing industry from 2003 to 2014 was calculated,and the relationship between the carbon emissions and global value chain position of China's manufacturing industry was studied based on the improved STIRPAT model. The results show that the improvement of global value chain position could significantly reduce the carbon emissions of China's manufacturing industry. In addition,foreign investment and energy structure hindered the low-carbon development of China's manufacturing industry. The effects of population size and research intensity on the carbon emissions of manufacturing industry were not significant. In the process of participating in the global value chain,China's manufacturing industry should effectively reduce carbon emissions by strengthening environmental regulation,optimizing energy structure and improving production technology.
基金supported by the 2018 Industrial Internet Innovation and Development Project——Industrial Internet Identification Resolution Sys⁃tem:National Top-Level Node Construction Project(Phase I).
文摘Green and low-carbon is a new development model that seeks balance between environmental sustainability and high economic growth.If explainable and available carbon emission data can be accurately obtained,it will help policy regulators and enterprise managers to more accurately implement this development strategy.A lot of research has been carried out,but it is still a difficult problem that how to accommodate and adapt the complex carbon emission data computing models and factor libraries developed by different regions,different industries and different enterprises.Meanwhile,with the rapid development of the Industrial Internet,it has not only been used for the supply chain optimization and intelligent scheduling of the manufacturing industry,but also been used by more and more industries as an important way of digital transformation.Especially in China,the Industrial Internet identification and resolution system is becoming an important digital infrastructure to uniquely identify objects and share data.Hence,a compatible carbon efficiency information service framework based on the Industrial Internet Identification is proposed in this paper to address the problem of computing and querying multi-source heterogeneous carbon emission data.We have defined a multi cooperation carbon emission data interaction model consisting of three roles and three basic operations.Further,the implementation of the framework includes carbon emission data identification,modeling,calculation,query and sharing.The practice results show that its capability and effectiveness in improving the responsiveness,accuracy,and credibility of compatible carbon efficiency data query and sharing services.
基金Under the auspices of National Natural Science Foundation of China(No.41371135)Jilin Province Science and Technology Guide Plan Soft Science Project(No.20120635)
文摘This paper constructed a carbon emission identity based on five factors: industrial activity, industrial structure, energy inten- sity, energy mix and carbon emission parameter, and analyzed manufacturing carbon emission trends in Jilin Province at subdivided industrial level through Log-Mean Divisia Index (LMDI) method. Results showed that manufacturing carbon emissions of Jilin Province increased 1.304 ~ 107t by 66% between 2004 and 2010. However, 2012 was a remarkable year in which carbon emissions decreased compared with 2011, the first fall since 2004. Industrial activity was the most important factor for the increase of carbon emissions, while energy intensity had the greatest impact on inhibiting carbon emission growth. Despite the impact of industrial structure on carbon emissions fluctuated, its overall trend inhibited carbon emission growth. Further, influences of industrial structure became gradually stronger and surpassed energy intensity in the period 2009-2010. These results conclude that reducing energy intensity is still the main way for carbon emission reduction in Jilin Province, hut industrial structure can not be ignored and it has great potential. Based on the analyses, the way of manufacturing industrial structure adjustment for Jilin Province is put forward.