With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean ...Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.展开更多
The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calc...The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calculated by carbon emission flow theory.However,the calculation procedure is time-consuming,especially for a country with 500-1000 thousand nodes,making it challenging to obtain nationwide carbon emis-sions intensity precisely.Additionally,the calculation procedure requires to gather all the grid data with high classified levels from different power grid companies,which can prevent data sharing and cooperation among different companies.This paper proposes a distributed computing algorithm for indirect carbon emission that can reduce the time consumption and provide privacy protection.The core idea is to utilize the sparsity of the nodes’flow matrix of the nationwide grid to partition the computing procedure into parallel sub-procedures exe-cuted in multiple terminals.The flow and structure data of the regional grid are transformed irreversibly for pri-vacy protection,when transmitted between terminals.A 1-master-and-N-slave layout is adopted to verify the method.This algorithm is suitable for large grid compa-nies with headquarter and branches in provinces,such as the State Grid Corporation of China.展开更多
The development of a Low Carbon Economy is a vital instrument to encounter climate change and take into account the growing challenges of an increasing urbanization in China. Wuxi City in East China’s Jiangsu Provinc...The development of a Low Carbon Economy is a vital instrument to encounter climate change and take into account the growing challenges of an increasing urbanization in China. Wuxi City in East China’s Jiangsu Province is starting to implement a Low Carbon City Plan for safeguarding a sustainable development of the city until 2020 and beyond. This paper aims at estimating the impact of the Low Carbon City plan for Wuxi’s energy demand and CO2-emissions until 2050. Using an econometric energy supply and demand model to estimate and forecast the Wuxi energy and CO2-balance aggregates until 2050, it compares a scenario without specific Low Carbon City measures to reduce sectoral CO2-intensities to a Low Carbon scenario implementing these measures according to the Low Carbon City Plan until 2020 and beyond. The decomposition of the Kaya-identity reveals that the increase of per capita income has the largest impact on the growth of CO2-emissions and the decrease of energy intensity of Gross Value Added the largest impact on the reduction of CO2-emissions in Wuxi. A decrease of population and CO2-intensity of Primary energy supply only have average contributions. The decrease of energy intensity of Gross Value Added is due to energy efficiency gains in the single economic sectors, but to a large extent due to structural changes of the economy away from energy intensive sectors such as iron and steel, chemical industry or cement industry towards the energy extensive service sectors. A growing residential sector also reduces the industrial share of energy demand. Only following the assumed national trend with a shift from CO2-intensive industries to a CO2-extensive service economy, the Low Carbon goal of a 50% reduction of CO2-intensity of Gross Value Added compared to 2005 cannot be reached in Wuxi. Specific sectoral CO2 -intensity goals have to be successfully observed by the economic sectors in Wuxi, especially by the industry. The promotion of combined heat and power generation also has to contribute to the specific activities in Wuxi.展开更多
When accounting the CO_2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers' and the consumers' responsibili...When accounting the CO_2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers' and the consumers' responsibility,since this will promote fairness in defining emission responsibility and enhance cooperation in emission reduction among provinces.This paper proposes a new method for calculating carbon emissions from the power sector at the provincial level based on the shared responsibility principle and taking into account interregional power exchange.This method can not only be used to account the emission responsibility shared by both the electricity production side and the consumption side,but it is also applicable for calculating the corresponding emission responsibility undertaken by those provinces with net electricity outflow and inflow.This method has been used to account for the carbon emissions responsibilities of the power sector at the provincial level in China since 2011.The empirical results indicate that compared with the production-based accounting method,the carbon emissions of major power-generation provinces in China calculated by the shared responsibility accounting method are reduced by at least 10%,but those of other power-consumption provinces are increased by 20% or more.Secondly,based on the principle of shared responsibility accounting,Inner Mongolia has the highest carbon emissions from the power sector while Hainan has the lowest.Thirdly,four provinces,including Inner Mongolia,Shanxi,Hubei and Anhui,have the highest carbon emissions from net electricity outflow- 14 million t in 2011,accounting for 74.42% of total carbon emissions from net electricity outflow in China.Six provinces,including Hebei,Beijing,Guangdong,Liaoning,Shandong,and Jiangsu,have the highest carbon emissions from net electricity inflow- 11 million t in 2011,accounting for 71.44% of total carbon emissions from net electricity inflow in China.Lastly,this paper has estimated the emission factors of electricity consumption at the provincial level,which can avoid repeated calculations when accounting the emission responsibility of power consumption terminals(e.g.construction,automobile manufacturing and other industries).In addition,these emission factors can also be used to account the emission responsibilities of provincial power grids.展开更多
Since Turkey’s economy and population is rapidly growing, Turkey mostly meets its energy demand from imported fossil sources due to the very limited indigenous oil and natural gas resources. However, Turkey has abund...Since Turkey’s economy and population is rapidly growing, Turkey mostly meets its energy demand from imported fossil sources due to the very limited indigenous oil and natural gas resources. However, Turkey has abundant renewable resources especially, hydro power potential to be used for generation of electricity. But only one-third of this significant economical potential could be used. This usage seems insufficient when compared with that of European countries. In order to analyze the potential long term impacts of the hydro power expanding shock on some macroeconomic variables of interest such as GDP, real consumption, real investment, exports, imports, trade balance, and carbon emissions, we developed TurGEM-D, a dynamic multisectoral general equilibrium model of the Turkish economy. Using TurGEM-D, we analyzed the impact of hydro power shock under policy scenario doubling hydro power generation. The simulation results show that doubling hydro power have slightly positive effects on macro indicators and carbon emissions for Turkish economy.展开更多
For many years, coal-fired power plant generation comprised the largest share of electricity in the U.S.power sector. While natural gas plants now constitute a greater portion of the total, coal is projected to remain...For many years, coal-fired power plant generation comprised the largest share of electricity in the U.S.power sector. While natural gas plants now constitute a greater portion of the total, coal is projected to remain a shrinking but significant component of U.S. electricity production. Natural gas-fired technologies are dispatchable and versatile generation sources, but the recent and anticipated growth of wind and solar technologies will add nondispatchable, intermittent power generation sources to U.S.electricity grids. Numerous emissions-related benefits arise from the deployment of these technologies, but they must coexist with coal plants, many of which run most efficiently under baseload operating procedures. Historical monthly emissions data has been analyzed on a sample of coal plants to show how modified coal operations have affected plant emission rates, as measured by carbon dioxide emitted per unit of electricity output. Statistically significant correlations between plant capacity factors and emission rate intensity have been observed by the majority of the sample, showing a worsening under more sporadic operations. Since nearly all of the coal plants in the sample are generating less electricity, determining the emission impact of operational decisions will assist policymakers as they seek to minimize total system emissions without severe disruptions to electricity cost and service reliability.展开更多
This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The ...This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.展开更多
Achieving carbon neutrality by 2060 is an ambitious goal to promote the green transition of economy and society in China.Highly relying on coal and contributing nearly half of CO_(2) emission,power industry is the key...Achieving carbon neutrality by 2060 is an ambitious goal to promote the green transition of economy and society in China.Highly relying on coal and contributing nearly half of CO_(2) emission,power industry is the key area for reaching carbon-neutral goal.On basis of carbon balance,a criterial equation of carbon neutral for power system is provided.By means of the equation,the different effects of three technical approaches to achieve carbon neutrality,including energy efficiency improvement,shifting energy structure and CO_(2) capture,utilization and storage(CCUS)technology,had been evaluated.The results indicate that building a carbon-neutral power system requires comprehensive coordination between energy efficiency,renewable energy and CCUS technology.In particular,the unique role of CCUS in achieving carbon neutral target was investigated.For any power systems with fossil energy input,CCUS and negative emission technologies is indispensable to reach carbon neutrality.However,rather high energy consumption and costs is the critical gas deterring the large scale deployment of CCUS.Considering the specific conditions of China’s power industry,before the time window between 2030 and 2040 being closed,CCUS would either be ready for large scale deployment by reducing energy consumption and costs,or be phased out along with the most coal power plants.Conclusively,carbon neutral scenario will give CCUS the last chance to decarbonize the fossil fuel,which has great significance for China.展开更多
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading.
基金supported by the Science and Technol-ogy Project of State Grid Cooperation of China(No.5700-202290184A-1-1-ZN).
文摘The calculation of the indirect carbon emis-sion is essential for power system policy making,carbon market development,and power grid planning.The em-bedded carbon emissions of the electricity system are commonly calculated by carbon emission flow theory.However,the calculation procedure is time-consuming,especially for a country with 500-1000 thousand nodes,making it challenging to obtain nationwide carbon emis-sions intensity precisely.Additionally,the calculation procedure requires to gather all the grid data with high classified levels from different power grid companies,which can prevent data sharing and cooperation among different companies.This paper proposes a distributed computing algorithm for indirect carbon emission that can reduce the time consumption and provide privacy protection.The core idea is to utilize the sparsity of the nodes’flow matrix of the nationwide grid to partition the computing procedure into parallel sub-procedures exe-cuted in multiple terminals.The flow and structure data of the regional grid are transformed irreversibly for pri-vacy protection,when transmitted between terminals.A 1-master-and-N-slave layout is adopted to verify the method.This algorithm is suitable for large grid compa-nies with headquarter and branches in provinces,such as the State Grid Corporation of China.
文摘The development of a Low Carbon Economy is a vital instrument to encounter climate change and take into account the growing challenges of an increasing urbanization in China. Wuxi City in East China’s Jiangsu Province is starting to implement a Low Carbon City Plan for safeguarding a sustainable development of the city until 2020 and beyond. This paper aims at estimating the impact of the Low Carbon City plan for Wuxi’s energy demand and CO2-emissions until 2050. Using an econometric energy supply and demand model to estimate and forecast the Wuxi energy and CO2-balance aggregates until 2050, it compares a scenario without specific Low Carbon City measures to reduce sectoral CO2-intensities to a Low Carbon scenario implementing these measures according to the Low Carbon City Plan until 2020 and beyond. The decomposition of the Kaya-identity reveals that the increase of per capita income has the largest impact on the growth of CO2-emissions and the decrease of energy intensity of Gross Value Added the largest impact on the reduction of CO2-emissions in Wuxi. A decrease of population and CO2-intensity of Primary energy supply only have average contributions. The decrease of energy intensity of Gross Value Added is due to energy efficiency gains in the single economic sectors, but to a large extent due to structural changes of the economy away from energy intensive sectors such as iron and steel, chemical industry or cement industry towards the energy extensive service sectors. A growing residential sector also reduces the industrial share of energy demand. Only following the assumed national trend with a shift from CO2-intensive industries to a CO2-extensive service economy, the Low Carbon goal of a 50% reduction of CO2-intensity of Gross Value Added compared to 2005 cannot be reached in Wuxi. Specific sectoral CO2 -intensity goals have to be successfully observed by the economic sectors in Wuxi, especially by the industry. The promotion of combined heat and power generation also has to contribute to the specific activities in Wuxi.
基金supported by Philosophy and Social Sciences Key Projects of the Ministry of Education,"China's Carbon Emissions Trading System under the Low Carbon Economy"[Grant No.10JZD0018]Program for New Century Excellent Talents of the Ministry of Education[Grant No.NCET-10-0646]+2 种基金National Social Science Fund Project,"Path to Green Economy:China's Carbon Trading Mechanism"[Grant No.12&ZD059]Youth Science Fund Project of National Natural Science Foundation,"Impact of International Trade on China's Carbon Efficiency and Related Policy Research"[Grant No.71303176]Humanities and Social Sciences Youth Fund Project of the Ministry of Education,"Impact of International Trade on China's Carbon Efficiency and Related Policy Research"[Grant No.13YJC790073]
文摘When accounting the CO_2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers' and the consumers' responsibility,since this will promote fairness in defining emission responsibility and enhance cooperation in emission reduction among provinces.This paper proposes a new method for calculating carbon emissions from the power sector at the provincial level based on the shared responsibility principle and taking into account interregional power exchange.This method can not only be used to account the emission responsibility shared by both the electricity production side and the consumption side,but it is also applicable for calculating the corresponding emission responsibility undertaken by those provinces with net electricity outflow and inflow.This method has been used to account for the carbon emissions responsibilities of the power sector at the provincial level in China since 2011.The empirical results indicate that compared with the production-based accounting method,the carbon emissions of major power-generation provinces in China calculated by the shared responsibility accounting method are reduced by at least 10%,but those of other power-consumption provinces are increased by 20% or more.Secondly,based on the principle of shared responsibility accounting,Inner Mongolia has the highest carbon emissions from the power sector while Hainan has the lowest.Thirdly,four provinces,including Inner Mongolia,Shanxi,Hubei and Anhui,have the highest carbon emissions from net electricity outflow- 14 million t in 2011,accounting for 74.42% of total carbon emissions from net electricity outflow in China.Six provinces,including Hebei,Beijing,Guangdong,Liaoning,Shandong,and Jiangsu,have the highest carbon emissions from net electricity inflow- 11 million t in 2011,accounting for 71.44% of total carbon emissions from net electricity inflow in China.Lastly,this paper has estimated the emission factors of electricity consumption at the provincial level,which can avoid repeated calculations when accounting the emission responsibility of power consumption terminals(e.g.construction,automobile manufacturing and other industries).In addition,these emission factors can also be used to account the emission responsibilities of provincial power grids.
文摘Since Turkey’s economy and population is rapidly growing, Turkey mostly meets its energy demand from imported fossil sources due to the very limited indigenous oil and natural gas resources. However, Turkey has abundant renewable resources especially, hydro power potential to be used for generation of electricity. But only one-third of this significant economical potential could be used. This usage seems insufficient when compared with that of European countries. In order to analyze the potential long term impacts of the hydro power expanding shock on some macroeconomic variables of interest such as GDP, real consumption, real investment, exports, imports, trade balance, and carbon emissions, we developed TurGEM-D, a dynamic multisectoral general equilibrium model of the Turkish economy. Using TurGEM-D, we analyzed the impact of hydro power shock under policy scenario doubling hydro power generation. The simulation results show that doubling hydro power have slightly positive effects on macro indicators and carbon emissions for Turkish economy.
文摘For many years, coal-fired power plant generation comprised the largest share of electricity in the U.S.power sector. While natural gas plants now constitute a greater portion of the total, coal is projected to remain a shrinking but significant component of U.S. electricity production. Natural gas-fired technologies are dispatchable and versatile generation sources, but the recent and anticipated growth of wind and solar technologies will add nondispatchable, intermittent power generation sources to U.S.electricity grids. Numerous emissions-related benefits arise from the deployment of these technologies, but they must coexist with coal plants, many of which run most efficiently under baseload operating procedures. Historical monthly emissions data has been analyzed on a sample of coal plants to show how modified coal operations have affected plant emission rates, as measured by carbon dioxide emitted per unit of electricity output. Statistically significant correlations between plant capacity factors and emission rate intensity have been observed by the majority of the sample, showing a worsening under more sporadic operations. Since nearly all of the coal plants in the sample are generating less electricity, determining the emission impact of operational decisions will assist policymakers as they seek to minimize total system emissions without severe disruptions to electricity cost and service reliability.
文摘This paper investigates long-term energy strategy compatible with significant reduction of world carbon dioxide (CO2) emissions, employing a long-term global energy model, Dynamic New Earth 21 (called DNE21). The model seeks the optimal energy mix from 2000 to 2100 that minimizes the world total energy system cost under various kinds of energy and technological constraints, such as energy resource constraints, energy supply and demand balance constraints, and CO2 emissions constraints. This paper discusses the results of primary energy supply, power generation mix, CO2 emission, CCS (carbon capture and storage) and total system costs for six regions including world as a whole. To evaluate viable pathways forward for implementation of sustainable energy strategies, nuclear power generation is a viable source of clean and green energy to mitigate the CO2 emissions. Present research shows simulation results in two cases consisting of no CO2 regulation case (base case) and CO2 REG case (regulation case) which halves the world CO2 emissions by the year 2050. Main findings of this research describe that renewable and nuclear power generation will contribute significantly to mitigate the CO2 emission worldwide.
基金funded by National Science and Technology Major Project(J2019-I-0009-0009).
文摘Achieving carbon neutrality by 2060 is an ambitious goal to promote the green transition of economy and society in China.Highly relying on coal and contributing nearly half of CO_(2) emission,power industry is the key area for reaching carbon-neutral goal.On basis of carbon balance,a criterial equation of carbon neutral for power system is provided.By means of the equation,the different effects of three technical approaches to achieve carbon neutrality,including energy efficiency improvement,shifting energy structure and CO_(2) capture,utilization and storage(CCUS)technology,had been evaluated.The results indicate that building a carbon-neutral power system requires comprehensive coordination between energy efficiency,renewable energy and CCUS technology.In particular,the unique role of CCUS in achieving carbon neutral target was investigated.For any power systems with fossil energy input,CCUS and negative emission technologies is indispensable to reach carbon neutrality.However,rather high energy consumption and costs is the critical gas deterring the large scale deployment of CCUS.Considering the specific conditions of China’s power industry,before the time window between 2030 and 2040 being closed,CCUS would either be ready for large scale deployment by reducing energy consumption and costs,or be phased out along with the most coal power plants.Conclusively,carbon neutral scenario will give CCUS the last chance to decarbonize the fossil fuel,which has great significance for China.