Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was construc...In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.展开更多
Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-fri...Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.展开更多
The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor ana...The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor analysis on the carbon dioxide emission reduction of the industry from 1978 to 2009,the author estimates and calculates the relevant indices during the 12 th Five-Year Plan period and in 2020.Finally the author analyzes the relationship and difference between the conventional technical and economic indices for electric power planning and the new index system for the low carbon economy development.展开更多
In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic l...In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.展开更多
Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in ...Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the g...With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.展开更多
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金supported by the Hebei Social Science Foundation Project(Grant No.HB20YJ018)2023 Hebei Province Social Science Development Research Project(Grant No.20230103005)Education Department of Hebei Province Graduate Student Innovation Ability Training Funding Project(Grant No.CXZZSS2023130).
文摘In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.
文摘Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.
文摘The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor analysis on the carbon dioxide emission reduction of the industry from 1978 to 2009,the author estimates and calculates the relevant indices during the 12 th Five-Year Plan period and in 2020.Finally the author analyzes the relationship and difference between the conventional technical and economic indices for electric power planning and the new index system for the low carbon economy development.
文摘In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
文摘With frequent disastrous weathers and increasingly prominent GHG effects in recent years, normal existence and development of mankind are facing unprecedented threats and challenges. GHG emissions mitigation for the global climate changes has been the focus of concern of the world. As the biggest developing country and the second largest country of carbon-emission, China attaches importance to the carbon emission reduction. The major GHG component is carbon dioxide and in China, the emis- sion of carbon dioxide is mainly from industrial production. In the paper, the status and trend of Coz emission from industrial departments, high-carbon emission and its specific industries are shown in statistics. Meanwhile, the policy environment, industrial organization structure and technology of carbon high emission are all discussed based on practical situations in these departments and industries. At the end, through the analysis of gray correlation, correlativity is explored for both fossil energy consumption and total carbon emission, and also for the production value and carbon emission of each industrial sector. Some policy proposals for the establishment of low-carbon industries and transition of economic development pattern are set forth.