Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo...Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.展开更多
The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the compon...The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.展开更多
基金supported by the key project of the National Natural Science Foundation of China(No.51034005)the Research Fund for the Doctoral Program of Higher Education(the Specialized Research Fund for the Doctoral Program of Higher Education of China)(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science&Technology Support(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.
基金This work was financially supported by National Key R&D Plan(2016YFC0701807).
文摘The measurement and calculation of the carbon emission from the production of prefabricated building components were studied.Based on the carbon emission factor method,a carbon emission calculation model of the components in the production phase was established.Besides,the actual measurement method and calculated at rated power method were proposed for the measurement and calculation of carbon emission,and several measurements were carried out in a component factory located in a coastal area of south China and a component factory located in Beijing,respectively.The results of the study show that the carbon emission factors of laminates and wallboards produced by factories located in coastal areas of southern China under natural curing conditions were 7.61 kg CO2/m3 and 5.84 kg CO2/m3 respectively.The carbon emissions conversion coefficients of concrete mixer,reinforcing bar production line and travelling crane between actual operation and with per the rated power were approximately 0.44,0.34 and 0.34 respectively.When the actual measurement cannot be performed,the conversion coefficient can be used to correct the data of the calculated at rated power to make it closer to the true value.The carbon emission factor of the laminated panels produced by the component factory in Beijing under steam curing concrete conditions was 132.15 kg CO2/m3,and the factory is used as a prototype,a complementary steam generation system model of solar energy and boiler was established,and it was calculated that the system can reduce CO2 emissions by about 300 tons throughout the year.