The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is ...The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.展开更多
The thermal conductivity or diffusivity of pearlitic grey irons with various carbon contents is investigated by the laser flash method. The materials are cast in controlled thermal environments and produced in three d...The thermal conductivity or diffusivity of pearlitic grey irons with various carbon contents is investigated by the laser flash method. The materials are cast in controlled thermal environments and produced in three dissimilar cooling rates. The cooling rate together with the carbon content largely influence the thermal conductivity of grey iron. Linear relationships exist between the thermal conductivity and the carbon content,the carbon equivalent and the fraction of former primary solidified austenite transformed into pearlite. The work shows that optimal thermal transport properties are obtained at medium cooling rates. Equations describing the thermal conductivity of pearlite,solidified as pre-eutectic austenite,and the eutectic of grey iron are derived. The thermal conductivity of pearlitic grey iron is modeled at both room temperature and elevated temperature with good accuracy.展开更多
基金supported by CITIC-CBMM R&D project (No.036)Graduate Innovation Fund of Shanghai University (No.SHUCX 102233)
文摘The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium.
文摘The thermal conductivity or diffusivity of pearlitic grey irons with various carbon contents is investigated by the laser flash method. The materials are cast in controlled thermal environments and produced in three dissimilar cooling rates. The cooling rate together with the carbon content largely influence the thermal conductivity of grey iron. Linear relationships exist between the thermal conductivity and the carbon content,the carbon equivalent and the fraction of former primary solidified austenite transformed into pearlite. The work shows that optimal thermal transport properties are obtained at medium cooling rates. Equations describing the thermal conductivity of pearlite,solidified as pre-eutectic austenite,and the eutectic of grey iron are derived. The thermal conductivity of pearlitic grey iron is modeled at both room temperature and elevated temperature with good accuracy.