We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the comp...The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the composites.The relationship between the performance of depositing coat and pH value,temperature,reaction time and the way of agitation was studied.Results show that the depositing quality is stable under pH between 4.5 and 5.0,temperature between 75 ℃ and 85 ℃,reaction time for 10 min and air agitation.The uniform and compact nickel layer deposited on carbon fibers was proved by XRD and SEM,and the electrical resistivity of carbon fibers with nickel coating was tested.Results indicate that the electrical resistivity of carbon fibers with electroless nickel plating is decreased by an order of magnitude compared with that of carbon fibers.It means that nickel coating can greatly improve the electromagnetic interference shielding properties of carbon fibers.展开更多
Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical prope...Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement.展开更多
Concrete, as an essential construction material in the construction industry, is the main component of solid waste. To improve the strength and durability of concrete, some additives can be added into concrete to repl...Concrete, as an essential construction material in the construction industry, is the main component of solid waste. To improve the strength and durability of concrete, some additives can be added into concrete to replace parts of cement. Carbon fiber and silica powder are the most common additives. Under a series of experiments, the effects of temperature, carbon fiber and silica powder on the mechanical properties of concrete were studied under normal circumstances. In this paper, a conclusion on the effects was drawn up mainly through some experimental analyses, so as to discuss the effect laws and provide a reference to manufacture the concrete of high strength and properties.展开更多
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
文摘The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the composites.The relationship between the performance of depositing coat and pH value,temperature,reaction time and the way of agitation was studied.Results show that the depositing quality is stable under pH between 4.5 and 5.0,temperature between 75 ℃ and 85 ℃,reaction time for 10 min and air agitation.The uniform and compact nickel layer deposited on carbon fibers was proved by XRD and SEM,and the electrical resistivity of carbon fibers with nickel coating was tested.Results indicate that the electrical resistivity of carbon fibers with electroless nickel plating is decreased by an order of magnitude compared with that of carbon fibers.It means that nickel coating can greatly improve the electromagnetic interference shielding properties of carbon fibers.
基金supported by the Projects of National Key Research and Development Program of China(2018YFA0703300,2018YFB1105100,2018YFC2001300)the National Natural Science Foundation of China(5167050531,51822504,91848204)+1 种基金Key Scientific and Technological Project of Jilin Province(20180201051GX)Program for JLU Science and Technology Innovative Research Team(2017TD-04)。
文摘Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement.
文摘Concrete, as an essential construction material in the construction industry, is the main component of solid waste. To improve the strength and durability of concrete, some additives can be added into concrete to replace parts of cement. Carbon fiber and silica powder are the most common additives. Under a series of experiments, the effects of temperature, carbon fiber and silica powder on the mechanical properties of concrete were studied under normal circumstances. In this paper, a conclusion on the effects was drawn up mainly through some experimental analyses, so as to discuss the effect laws and provide a reference to manufacture the concrete of high strength and properties.