期刊文献+
共找到481篇文章
< 1 2 25 >
每页显示 20 50 100
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
1
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite Cf/Al composite COATING WETTABILITY mechanical properties
下载PDF
Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites 被引量:4
2
作者 李劲 范群 +2 位作者 陈振华 黄凯兵 程英亮 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期457-461,共5页
Carbon fiber/phenolic resin composites were reinforced by the carbon fiber sized with the polymer films of phenol, m-phenylenediamine or acrylic acid, which was electropolymerized by cyclic voltammetry or chronopotent... Carbon fiber/phenolic resin composites were reinforced by the carbon fiber sized with the polymer films of phenol, m-phenylenediamine or acrylic acid, which was electropolymerized by cyclic voltammetry or chronopotentiometry. The contact angles of the sized carbon fibers with deionized water and diiodomethane were measured by the wicking method based on the modified Washburn equation, to show the effects of the different electropolymer film on the surface free energy of the carbon fiber after sizing by the electropolymerization. Compared with the unsized carbon fiber, which has 85.6°of contact angle of water, 52.2°of contact angle of diiodomethane, and 33.1 mJ/m2 of surface free energy with 29.3 mJ/m2 of dispersive components (γL) and 3.8 mJ/m2 of polar components (γsp), respectively. It is found that the electropolymer sized carbon fiber tends to reduce the surface energy due to the decrease of dispersiveγL with the increase of the polymer film on the surface of the carbon fiber that plays an important role in improving the mechanical properties of carbon/phenolic resin composites. Compared with the phenolic resin composites reinforced by the unsized carbon fiber, the impact, flexural and interlaminar shear strength of the phenolic resin composites were improved by 44 %, 68% and 87% when reinforced with the carbon fiber sized by the electropolymer of m-phenylenediamine, 66%, 100%, and 112% by the electropolymer of phenol, and 20%, 80 %, 100% by the electropolymer of acrylic acid. The results indicate the skills of electropolymerization may provide a feasible method for the sizing of carbon fiber in a composite system, so as to improve the interfacial performance between the reinforce materials and the matrix and to increase the mechanical properties of the composites. 展开更多
关键词 酚醛树脂复合材料 力学性能 碳纤维 电聚合 胶料
下载PDF
Properties and Structure of Multi-walled Carbon Nanotubes/Cellulose Composites Fibers Using Ionic Liquid as Solvent
3
作者 蔡涛 杨瑜榕 +1 位作者 王明葵 张慧慧 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期591-594,共4页
To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.... To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.The thermal properties,mechanical properties,and structure of the composite fibers were investigated.The wide angle X-ray diffraction(WAXD) measurements show that MWNTs/cellulose composite fibers have cellulose Ⅱ crystal structure.The results obtained from thermal gravimetric analysis(TGA) indicate that the addition of low nanotubes amounts leads to an increase in the degrade temperature.The tensile mechanical properties show that initial modulus and tensile strength considerably increase in the presence of nanotubes with a maximum for 66.7% and 22.7%. 展开更多
关键词 carbon nanotubes ionic liquid composite fiber mechanical properties
下载PDF
Effects of Fiber Surface Pretreatment and Composite Posttreatment on Mechanical Properties of 2D⁃Cf/Phosphate Geopolymer Matrix Composites
4
作者 Peigang He Zhanlin Jia +5 位作者 Shuai Fu Jiatao Wang Xiaoming Duan Zhihua Yang Dechang Jia Yu Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第3期233-242,共10页
Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix compo... Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix composites at low cost.However,the low mechanical properties as well as the intrinsic brittleness limit their technological implementations,and it is necessary to enhance the mechanical properties of geopolymers by adopting various kinds of reinforcements.In this work,therefore,two⁃dimensional continuous carbon fiber(Cf)reinforced phosphate⁃based geopolymer composites(Cf/geopolymer)were prepared through ultrasonic⁃assisted impregnation method.Effects of acetone treatment and high⁃temperature treatment on the properties of Cf/geopolymer composites were studied by X⁃ray photoelectron spectroscopy(XPS),X⁃ray diffraction(XRD),and scanning electron microscopy(SEM).Results of the study proved that acetone treatment plays a key role in ameliorating the interfacial interaction between Cf and phosphate matrix,which can thus enhance the mechanical properties of Cf/geopolymer composites.The Cf/geopolymer composites prepared by acetone⁃treated Cf had a flexural strength of 156.1 MPa and an elastic modulus of 39.7 GPa in Y direction.Moreover,an additional Sol⁃SiO2 re⁃impregnation treatment could further enhance the mechanical properties of the acetone⁃treated Cf/geopolymer composites by repairing the cracks and filling the pores.The results in this paper not only provide insights into the surface modification of Cf,but also report a facile and low⁃cost preparation route for Cf/geopolymer composites with potential applications in aerospace and defense technology. 展开更多
关键词 GEOPOLYMER carbon fiber composite surface modification mechanical properties
下载PDF
Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites 被引量:8
5
作者 ZHANG Yunhe WU Gaohui 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期102-107,共6页
T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, an... T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices. 展开更多
关键词 carbon fiber aluminum matrix composite interface reaction mechanical properties
下载PDF
Effect of Cold Plasma Treatment on the Mechanical Properties of RTM Composites 被引量:2
6
作者 WeiQIN ZhiqianZHANG XiaohongWU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期281-283,共3页
Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result show... Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that the surface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PET braided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, and therefore enhances the mechanical properties of the KTM composites. 展开更多
关键词 Cold plasma surface treatment carbon fibers RTM composites mechanical properties
下载PDF
Preparation of three-dimensional braided carbon fiber reinforced mullite composites from a sol with high solid content 被引量:1
7
作者 Wei ZHANG Qing-song MA +1 位作者 Ke-wei DAI Wei-guo MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2249-2255,共7页
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as... To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics andmullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300℃ and thegel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated throughthe route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa anda fracture toughness of 10.9 MPa·m1/2are obtained although the total porosity reaches 26.0%. Oxidation resistances of the compositesat 1200, 1400 and 1600 ℃ were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny massloss and their mechanical properties are well retained after oxidation at 1600 ℃ for 30 min. 展开更多
关键词 carbon fiber reinforced mullite composites Al2O3-SiO2 sol mechanical properties oxidation resistance
下载PDF
Development of Hybrids Composites of Carbon and Aramid Fibers to Reinforce Matrix of Epoxy Resins Part I
8
作者 Arnaldo Carlos Morelli Jose Antonio Garcia Croce +1 位作者 Célio Caminaga Letícia R.Timarco 《材料科学与工程(中英文B版)》 2018年第2期86-89,共4页
Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,wh... Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry. 展开更多
关键词 Hybrid compositeS fibers Kevlar/carbon physical and mechanics properties
下载PDF
Pyrolytic Recycling of Carbon Fibers from Prepregs and Their Use in Polyamide Composites
9
作者 Stephan Schwarz Thomas Höftberger +2 位作者 Christoph Burgstaller Andreas Hackl Clemens Schwarzinger 《Open Journal of Composite Materials》 2020年第4期92-105,共14页
Carbon fibers composites are well</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">known as high tech materials but are also recognized as... Carbon fibers composites are well</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">known as high tech materials but are also recognized as a problem after use as they have to be deposited in landfills. Pyrolysis is an attractive process for recycling carbon fibers from used composites as well as offcuts from prepregs. Pyrolysis of carbon fiber composite prepregs is carried out in a pilot plant with a single screw reactor. The pyrolysis products, carbon fibers and pyrolysis vapor are fully characterized. Variation of pyrolysis temperature is carried out to obtain carbon fibers with the best possible surface properties. In order to compare the mechanical properties of the recycled carbon fibers with virgin material, composite materials with polyamide are produced and their properties compared. 展开更多
关键词 carbon fibers composites mechanical properties
下载PDF
Mechanical properties of C_f/Si-O-C composites prepared by hot-pressing assisted pyrolysis of polysiloxane
10
作者 马青松 陈朝辉 +1 位作者 郑文伟 胡海峰 《中国有色金属学会会刊:英文版》 CSCD 2004年第3期480-484,共5页
Silicon oxycarbide composites reinforced by three-dimensional braided carbon fiber (3D-B Cf/Si-O-C) were fabricated via precursor infiltration and pyrolysis of polysiloxane, and the effects of processing variables o... Silicon oxycarbide composites reinforced by three-dimensional braided carbon fiber (3D-B Cf/Si-O-C) were fabricated via precursor infiltration and pyrolysis of polysiloxane, and the effects of processing variables on mechanical properties and microstructures of 3D-B Cf/Si-O-C composites were investigated. It is found that the mechanical properties and densities of 3D-B Cf/Si-O-C composites can be increased if the first pyrolysis cycle is assisted by hot-pressing. Pyrolysis temperature has great effects on mechanical properties and microstructures of 3D-B Cf/Si-O-C composites. The composite, which is hot-pressed at 1 600 ℃ for 5 min with pressure of 10 MPa in the first pyrolysis cycle, exhibits high mechanical properties: bending strength 502 MPa and fracture toughness 23.7 MPa·m1/2. The high mechanical properties are mainly attributed to desirable interfacial structure and high density. 展开更多
关键词 聚硅氧烷 热解 热压 Cf/Si-O-C 复合材料 机械性能 碳纤维
下载PDF
Effect of Accelerated Aging Temperature under Artificial Seawater on the Properties of Carbon Fiber/Epoxy Composites and the Erosion Mechanism
11
作者 XU Jinwei LU Yunfei +3 位作者 DING He DENG Zongyi SHI Minxian HUANG Zhixiong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2024年第6期1365-1371,共7页
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se... In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite. 展开更多
关键词 carbon fiber/epoxy composites artificial seawater aging temperature moisture absorption mechanical properties
下载PDF
Elevating mechanical and biotribological properties of carbon fiber composites by constructing graphene-silicon nitride nanowires interlocking interfacial enhancement
12
作者 Xinyi Wan Leilei Zhang +5 位作者 Bihan Zhang Qian Gao Tiantian Wang Haiyang Li Hongchao Sheng Hejun Li 《Journal of Materiomics》 SCIE CSCD 2024年第5期1080-1090,共11页
Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)hav... Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)have great potential application in the field of artificial hip joints,where a combination of high mechanical strength and excellent biotribological property are required.In this work,the graphene-silicon nitride nanowires(Graphene-Si_(3)N_(4)nws)interlocking interfacial enhancement were designed and constructed into CHM for boosting the mechanical and biotribological properties.The graphene and Si_(3)N_(4)nws interact with each other and construct interlocking interfacial enhancement.Benefiting from the Graphene-Si_(3)N_(4)nws synergistic effect and interlocking enhancement mechanism,the mechanical and biotribological properties of CHM were promoted.Compared with CHMP,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMP were increased by 80.0% and 61.5%,respectively.The friction coefficient and wear rate were reduced by 52.8% and 52.9%,respectively.Compared with CHMC,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMC were increased by 145.4% and 64.2%.The friction coefficient and wear rate were decreased by 52.3% and 73.6%.Our work provides a promising methodology for preparing Graphene-Si_(3)N_(4)nws reinforced CHM with more reliable mechanical and biotribological properties for use in artificial hip joints. 展开更多
关键词 carbon fiber composites Graphene-Si_(3)N_(4)nws reinforcement Interlocking enhancement mechanical property Biotribological property
原文传递
Influence of recycled carbon fiber addition on the microstructure and creep response of extruded AZ91 magnesium alloy
13
作者 Sinan Kandemir Jan Bohlen Hajo Dieringa 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2518-2529,共12页
In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(... In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep. 展开更多
关键词 Metal matrix composites Magnesium alloys Recycled carbon fiber Extrusion Microstructure mechanical properties CREEP
下载PDF
Preparation and microwave dielectric properties of C_(sf)/Si_3N_4 composites
14
作者 王晓艳 罗发 +3 位作者 李鹏 苏晓磊 朱冬梅 周万城 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期653-655,共3页
The Csf/Si3N4 composites were prepared by hot-press sintering method using α-Si3N4 power,short carbon fibers and La2O3-Y2O3 sintering additives. The mechanical and microwave dielectric properties of Csf/Si3N4 composi... The Csf/Si3N4 composites were prepared by hot-press sintering method using α-Si3N4 power,short carbon fibers and La2O3-Y2O3 sintering additives. The mechanical and microwave dielectric properties of Csf/Si3N4 composites were studied and discussed. The results show that the addition of the short carbon fibers can not destroy the relative density of the sintered samples,but it deteriorates the flexural strength of the sintered samples,so the flexural strength of the silicon nitride matrix is the highest among the samples. The real part(ε′) and the imaginary part(ε″) of the permittivity of Csf/Si3N4 composites greatly increase with increasing volume fraction of the short carbon fibers,achieve the maximum 73.1 and 101.5,respectively. A strong frequency dependence of the imaginary part(ε″) of the permittivity is observed. 展开更多
关键词 碳/氮化硅复合物 短碳纤维 机械性能 微波介电性能
下载PDF
Mechanical properties and thermal stability of carbon fiber cloth reinforced sol-derived mullite composites 被引量:2
15
作者 Wei ZHANG Qingsong MA +2 位作者 Kuanhong ZENG Songlin LIANG Weiguo MAO 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第2期218-227,共10页
For the wide application as thermal protection materials,it is very necessary for mullite ceramics to improve fracture toughness.In this paper,the laminated and stitched carbon fiber cloth preform reinforced mullite(C... For the wide application as thermal protection materials,it is very necessary for mullite ceramics to improve fracture toughness.In this paper,the laminated and stitched carbon fiber cloth preform reinforced mullite(C/mullite)composites were prepared through the route of sol impregnation and heat treatment using the Al2O3-SiO2 sol with a high solid content as raw materials.The C/mullite composites showed a flexural strength of 228.9 MPa that was comparable to that of dense monolithic mullite although the total porosity reached 13.4%.Especially,a fracture toughness of 11.2 MPa·m1/2that was 4–5 times that of dense monolithic mullite was obtained.Strength deterioration due to the carbothermal reduction between carbon fiber and the residual SiO2 in matrix was found above 1200℃.A pyrolytic C(Py C)coating was deposited on carbon fibers as interfacial coating.The chemical damage to carbon fibers was obviously alleviated by the sacrifice of PyC coating.Accordingly,the C/PyC/mullite composites kept strength unchanged up to 1500℃,and showed much higher strength retention ratio than C/mullite composites after annealing at 1600℃. 展开更多
关键词 carbon fiber REINFORCED MULLITE composite SOL mechanical property thermal stability
原文传递
PP/PA66原位复合材料的成纤性与力学性能 被引量:8
16
作者 沈经纬 黄文艺 左胜武 《中国塑料》 CAS CSCD 北大核心 2002年第12期27-31,共5页
用挤出 -拉伸 -注塑法制备了PP/PA66原位复合材料 ,研究了拉伸比 (λ)和增容剂用量 (Cg)对PA66成纤性和材料力学性能的影响。结果表明 :增大λ有利于成纤 ,能明显提高材料的冲击强度 (αk) ,拉伸强度 (σt)也有增益 ;增加Cg 不利于成纤 ... 用挤出 -拉伸 -注塑法制备了PP/PA66原位复合材料 ,研究了拉伸比 (λ)和增容剂用量 (Cg)对PA66成纤性和材料力学性能的影响。结果表明 :增大λ有利于成纤 ,能明显提高材料的冲击强度 (αk) ,拉伸强度 (σt)也有增益 ;增加Cg 不利于成纤 ,导致αk 下降 ,但能改善界面粘结而使σt 明显提高 ;材料σt 和αk 分别主要受界面结构和纤维形态控制 ,决定了它们随λ和Cg 展开更多
关键词 聚丙烯/聚酰胺66原位复合材料 拉伸比 增容剂 成纤性 相形态 力学性能
下载PDF
混杂纤维/POE-g-MAH复合增强PA66耐磨材料 被引量:5
17
作者 牛永平 刘任晖 +1 位作者 杜三明 汪小伟 《工程塑料应用》 CAS CSCD 北大核心 2017年第2期12-16,共5页
采用双螺杆挤出机制备聚酰胺66(PA66)/碳纤维/玻璃纤维材料和PA66/碳纤维材料,另外加入相容剂马来酸酐接枝聚烯烃弹性体(POE–g–MAH)来改善相界面的相容性,同时评价其力学性能和摩擦磨损性能。结果表明:在碳纤维增强PA66材料的研究过... 采用双螺杆挤出机制备聚酰胺66(PA66)/碳纤维/玻璃纤维材料和PA66/碳纤维材料,另外加入相容剂马来酸酐接枝聚烯烃弹性体(POE–g–MAH)来改善相界面的相容性,同时评价其力学性能和摩擦磨损性能。结果表明:在碳纤维增强PA66材料的研究过程中引入玻璃纤维可降低最高界面温度并且使摩擦系数降低,有助于改善PA66材料的摩擦学性能,共混物的摩擦过程以磨粒磨损和粘着磨损为主。此外,在添加入玻璃纤维后,15%混杂纤维填充比15%碳纤维单独填充的PA66材料拉伸强度提高9.89%,冲击强度提高34.02%;而添加入20%混杂纤维与20%碳纤维单独填充的PA66材料相比,拉伸强度提高了71.65%,冲击强度提高了26.23%。 展开更多
关键词 聚酰胺66 混杂纤维 玻璃纤维 碳纤维 力学性能 摩擦磨损性能
下载PDF
废胶粉、滑石粉改性PA66/GF复合材料的制备与性能 被引量:4
18
作者 张敏 王正宏 +3 位作者 荆晶晶 张驰 苗妮娜 容文静 《工程塑料应用》 CAS CSCD 北大核心 2015年第5期1-6,共6页
采用硅烷偶联剂KH560表面改性废胶粉(WRP)、环氧树脂E44改性滑石粉(Talc),以尼龙(PA)66/玻璃纤维(GF)复合材料为基体,制备了WRP,Talc及两者协同改性的PA66/GF复合材料,研究了WRP,Talc及两者协同作用对复合材料力学性能、结晶性能和热稳... 采用硅烷偶联剂KH560表面改性废胶粉(WRP)、环氧树脂E44改性滑石粉(Talc),以尼龙(PA)66/玻璃纤维(GF)复合材料为基体,制备了WRP,Talc及两者协同改性的PA66/GF复合材料,研究了WRP,Talc及两者协同作用对复合材料力学性能、结晶性能和热稳定性能的影响。结果表明,当3份WRP经过1份KH560处理后,其与PA66/GF基体间的界面粘结性明显得到改善,其改性的复合材料弯曲强度和冲击强度最高,分别比PA66/GF基体提高了11.09%和2.05%。当1份Talc经过3份E44处理后,其在基体中具有良好的分散性,改性的复合材料弯曲强度和冲击强度达到最大,分别比基体材料提高了13.89%和8.42%。WRP与Talc均能促进复合材料的结晶,但两者协同作用对复合材料结晶性能没有明显的影响。采用1份KH560处理的3份WRP协同3份E44处理的1份Talc对复合材料进行改性,可使弯曲强度和冲击强度相比基体分别提高16.97%和6.25%,且使复合材料具有良好的热稳定性能,达到了低成本WRP和Talc改性制备高性能橡塑复合材料的目的。 展开更多
关键词 玻纤增强尼龙66 废胶粉 滑石粉 复合材料 力学性能
下载PDF
增韧剂对长纤维增强PA66复合材料性能的影响 被引量:1
19
作者 金泽宇 信春玲 +3 位作者 曹敏华 闫宝瑞 任峰 何亚东 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期20-25,共6页
采用熔融浸渍法制备了长玻璃纤维增强PA66复合材料,通过对树脂熔体黏度、预浸料浸渍程度和纤维断裂率、材料力学性能进行测试及扫描电子显微镜(SEM)观察,分别研究了不同含量的增韧剂乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙烯-辛烯... 采用熔融浸渍法制备了长玻璃纤维增强PA66复合材料,通过对树脂熔体黏度、预浸料浸渍程度和纤维断裂率、材料力学性能进行测试及扫描电子显微镜(SEM)观察,分别研究了不同含量的增韧剂乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)对复合材料性能的影响。实验结果表明:随着含量的提高,两种增韧剂均能够使长玻璃纤维增强PA66复合材料的冲击强度增大,树脂与纤维界面的结合程度提升,其中POE-g-GMA的增韧及界面改善效果更为明显,可有效提升复合材料的力学性能。 展开更多
关键词 长纤维增强pa66复合材料 增韧剂 力学性能 界面结合
下载PDF
高模扁平玻璃纤维增强PA66复合材料的应用研究 被引量:2
20
作者 周长汶 付培根 +3 位作者 刘敏 王培毅 刘迁 赵宇 《玻璃纤维》 CAS 2023年第5期25-30,共6页
为满足下游产品对PA66复合材料力学强度、光学性能、尺寸稳定性等提出的更高要求,通过使用双螺杆挤出机,采用共混改性方法制备高模扁平玻璃纤维增强尼龙66(SF-PA66)复合材料。对比了高模扁平玻璃纤维、扁平玻璃纤维和圆形玻璃纤维增强... 为满足下游产品对PA66复合材料力学强度、光学性能、尺寸稳定性等提出的更高要求,通过使用双螺杆挤出机,采用共混改性方法制备高模扁平玻璃纤维增强尼龙66(SF-PA66)复合材料。对比了高模扁平玻璃纤维、扁平玻璃纤维和圆形玻璃纤维增强的尼龙66复合材料的加工性能、力学性能、光学性能、抗翘曲性能和各向异性情况。结果表明,高模扁平玻璃纤维在各项力学性能表现上均优于扁平玻璃纤维和圆形玻璃纤维,且兼具扁平玻璃纤维在抗翘曲、加工流动性和各向同性方面的优势,尤其在透明度方面表现优异。 展开更多
关键词 高模扁平玻璃纤维 pa66 复合材料 力学性能
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部