期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Continuous Deformation Monitoring by Polymermatrix Carbon Fiber Sensitive Layer 被引量:2
1
作者 郑华升 ZHU Sirong LI Zhuoqiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期705-712,共8页
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont... Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally. 展开更多
关键词 polymer-matrix carbon fiber sensitive layer strain sensitivity continuous deformation monitoring temperature compensation
下载PDF
Outstanding long-cycling lithium−sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content
2
作者 Mengqin Gao Wan-Ying Zhou +6 位作者 Yu-Xue Mo Tian Sheng Yanhong Deng Liezun Chen Kai Wang Yanliang Tan Haiqing Zhou 《Advanced Powder Materials》 2022年第1期88-96,共9页
Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite(sulfur content,85... Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite(sulfur content,85%)grown on the S surface.The platinum(Pt)nanosheets provide physical barrier and strong chemical binding to anchor LiPSs and improve the electronic conductivity of S.Significantly,by introducing carbon nanofibers(CNFs)as the interlayer,we achieved outstanding Li-S battery with a high initial discharge capacity of 1040 mAh g^(-1)at 1.0C and a reversible capacity of 742 mAh g^(-1)after 350 cycles,demonstrating its excellent long-term cycling stability with a low capacity decay rate of 0.08%per cycle.According to the density functional theory(DFT)calculations,we proposed that the superior performance is attributed to the cooperative effects of the strong interfacial interaction between Pt(111)surface and the S8 molecule,and very low reaction energy of decomposition,−6.4​eV. 展开更多
关键词 Lithium-sulfur batteries Wet chemistry High sulfur content Pt nanoshell carbon fibers layer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部