In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). ...In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.展开更多
Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as therma...Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as thermal insulation materials.However,preparing the coatings with excellent oxidation and ablation resistance while avoiding evident damage to the C/CA substrate still remains a challenge.Herein,a SiC@SiO_(2)nanowire-toughened ZrB2–SiC/SiC bilayer coating with a large thickness of 500μm was prepared on C/CA using a one-step low-temperature reaction sintering method,which simultaneously formed a sintered outer layer with even-distributed nanowires and a siliconized gradient inner layer.By courtesy of the synergic thermal response of the layers and the crack deflection induced by the nanowires,the resulting coating has moderate residual compressive stress of 0.08–1.22 GPa in the interface,high interfacial bonding strength of 6.02 MPa,and good fracture toughness of 4.36 MPa·m^(1/2).Benefited from the optimum components and improved structure,the coating shows excellent cyclic ablation resistance with linear ablation rates of 0.1μm/s at 1650℃for 1500 s(300 s×5 cycles)and 0.4μm/s at 1850℃for 900 s(300 s×3 cycles).The one-step preparation strategy contributes to little damage to the substrate,thus showing the well-preserved mechanical and thermal insulation properties.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51432008,51502242,U1435202,and 51202194)the Research Fund for the Doctoral Program of Higher Education of China (No.20126102110013)the Key Grant Project of Chinese Ministry of Education (No.313047)
文摘In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.
基金the Defense Industrial Technology Development Program(No.JCKY2021130B007)the National Natural Science Foundation of China(Nos.52272075 and 52188101)+1 种基金the Research Fund of Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021190)the directional institutionalized scientific research platform relies on China Spallation Neutron Source of Chinese Academy of Sciences,and the National Key R&D Program of China(No.2021YFA1500804).
文摘Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as thermal insulation materials.However,preparing the coatings with excellent oxidation and ablation resistance while avoiding evident damage to the C/CA substrate still remains a challenge.Herein,a SiC@SiO_(2)nanowire-toughened ZrB2–SiC/SiC bilayer coating with a large thickness of 500μm was prepared on C/CA using a one-step low-temperature reaction sintering method,which simultaneously formed a sintered outer layer with even-distributed nanowires and a siliconized gradient inner layer.By courtesy of the synergic thermal response of the layers and the crack deflection induced by the nanowires,the resulting coating has moderate residual compressive stress of 0.08–1.22 GPa in the interface,high interfacial bonding strength of 6.02 MPa,and good fracture toughness of 4.36 MPa·m^(1/2).Benefited from the optimum components and improved structure,the coating shows excellent cyclic ablation resistance with linear ablation rates of 0.1μm/s at 1650℃for 1500 s(300 s×5 cycles)and 0.4μm/s at 1850℃for 900 s(300 s×3 cycles).The one-step preparation strategy contributes to little damage to the substrate,thus showing the well-preserved mechanical and thermal insulation properties.