期刊文献+
共找到2,071篇文章
< 1 2 104 >
每页显示 20 50 100
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
1
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
High-sensitivity phase imaging eddy current magneto-optical system for carbon fiber reinforced polymers detection
2
作者 Jiang-Shan Ai Quan Zhou +5 位作者 Yi-Ping Liang Chun-Rui Feng Bing Long Li-Bing Bai Yong-Gang Wang Chao Ren 《Journal of Electronic Science and Technology》 EI CSCD 2023年第4期48-59,共12页
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems... This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems. 展开更多
关键词 carbon fiber reinforced polymers Defect detection Eddy current magneto-optical Nondestructive testing Phase imaging
下载PDF
A review on machinability of carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP)composite materials 被引量:33
3
作者 Meltem Altin Karatas Hasan Gokkaya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期318-326,共9页
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s... Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models. 展开更多
关键词 COMPOSITE MATERIALS fiber reinforced polymer COMPOSITE MATERIALS cfrp GFRP Machining Wear Surface damage
下载PDF
Porosity Effects on Interlaminar Fracture Behavior in Carbon Fiber-Reinforced Polymer Composites 被引量:2
4
作者 Issa A. Hakim Steven L. Donaldson +1 位作者 Norbert G. Meyendorf Charles E. Browning 《Materials Sciences and Applications》 2017年第2期170-187,共18页
Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient... Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning. 展开更多
关键词 carbon fiber reinforced Composite NONDESTRUCTIVE Evaluation POROSITY Fatigue Fracture Behavior SERIAL Sectioning
下载PDF
Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication 被引量:1
5
作者 JIA Jun-hong CHEN Jian-min ZHOU Hui-di CHEN Lei 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期332-340,共9页
The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron micros... The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding. 展开更多
关键词 FRICTION and WEAR TRANSFER film water LUBRICATION carbon fiber polymer composite
下载PDF
Parameters of static response of carbon fiber reinforced polymer(CFRP) suspension cables
6
作者 王立彬 吴勇 Mohammad Noori 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3123-3132,共10页
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co... The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically. 展开更多
关键词 碳纤维增强复合材料 静态响应 电缆 碳纤维复合材料 位移增量 非对称载荷 平衡方程 悬挂
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
7
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(cfrp) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Anisotropic Thermal Diffusivity Measurements in High-Thermal-Conductive Carbon-Fiber-Reinforced Plastic Composites 被引量:3
8
作者 Masaya Kuribara Hosei Nagano 《Journal of Electronics Cooling and Thermal Control》 2015年第1期15-25,共11页
This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot p... This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot periodic heating method. The samples were unidirectional (UD) and crossply (CP) CFRPs. All carbon fibers of the UD samples ran in one direction, while those of the CP samples ran in two directions. In both UD and CP CFRPs, from -80&deg;C to +80&deg;C, temperature dependence of thermal diffusivity values increased as temperature decreased. In this temperature range, the anisotropic ratio between the fiber direction and its perpendicular direction of the UD CFRP was 106 - 124. During the anisotropy distribution measurement, it was found that thermal anisotropy can be visualized by scanning the laser in a circle on the sample. The thermal diffusivity of the UD CFRP in the fiber direction was 17 times larger than that in the 15&deg;direction, and the thermal diffusivity in the other directions was lower than that in the 15&deg;direction. The anisotropy distribution for the CP CFRP reflected its inhomogeneous structure. 展开更多
关键词 AC Calorimetric Method Anisotropy carbon-fiber-reinforced polymers High THERMAL Conductivity THERMAL DIFFUSIVITY
下载PDF
Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic 被引量:1
9
作者 Tae Kun Jeong Masahito Ueda 《Open Journal of Composite Materials》 2016年第1期8-17,共10页
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re... The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers. 展开更多
关键词 polymer Matrix Composite carbon fiber Compressive Failure Kink-Band Model Composite
下载PDF
THE EFFECT OF POLYMER IN STEEL FIBER REINFORCED CEMENT COMPOSITES
10
作者 吴少鹏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第3期23-27,52,共6页
Three kinds of polymers, polymethylaarylate emulsion (PAE) , polyvinyl formal solution (PV-FO),styrene acrylate copolymer emulsion(SA) are chosen to study the effect of polymer in steel fiber reinforced cement composi... Three kinds of polymers, polymethylaarylate emulsion (PAE) , polyvinyl formal solution (PV-FO),styrene acrylate copolymer emulsion(SA) are chosen to study the effect of polymer in steel fiber reinforced cement composites (SFRCC). The experimental results shonw that the bonding properties in SFRCC are remarkably im proved after the addition of three kinds of polymer. The inter facial handing strength is obroiously enhanced with the addition of polymer contents, and is gradually steady or cut down slightly when the polymer content ercesses 15%. In the meantime,the toughness of SFRCC is greatly advanced when the polymers are doped. At last, the effect mechanism of polymer in SFRCC is put 展开更多
关键词 polymer steel fiber reinforced CEMENT composites EFFECT mechanism
下载PDF
Orthogonal design of experiment and analysis of abrasive water jet cutting on carbon fiber reinforced composites
11
作者 HE Binjie DAI Jinchun +3 位作者 ZHAO Deng HUANG Nuodi WU Shijing HAN Caihong 《排灌机械工程学报》 EI CSCD 北大核心 2020年第9期928-932,共5页
The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so ... The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so on.However,this composite has a strict requirement on processing techniques,for example,brittle damage or delamination often exists in conventional processing techniques.Abrasive water jet machining technology is a new type of green machining technique with distinct advantages such as high-energy and thermal distortion free.The use of abrasive water jet technique to process carbon fiber composite materials has become a popular trend since it can significantly improve the processing accuracy and surface quality of carbon fiber composite materials.However,there are too many parameters that affect the quality of an abrasive water jet machining.At present,few studies are carried out on the parameter optimization of such a machining process,which leads to the unstable quality of surface processing.In this paper,orthogonal design of experiment and regression analysis were employed to establish the empirical model between cutting surface roughness and machining process parameters.Then a verified model was used to optimize the machining process parameters for abrasive water jet cutting carbon fiber reinforced composites. 展开更多
关键词 abrasive water jet carbon fiber reinforced composites surface roughness orthogonal experiment regression analysis
下载PDF
Mechanical joint performances of friction self-piercing riveted carbon fiber reinforced polymer and AZ31B Mg alloy
12
作者 Yuan Li Yong Chae Lim +2 位作者 Jian Chen Jiheon Jun Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3367-3379,共13页
Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load... Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing. 展开更多
关键词 Friction self-piercing riveting Magnesium alloy carbon fiber reinforced polymer Dynamic recrystallization Fatigue life Crack initiation
下载PDF
Study of galvanic corrosion and mechanical joint properties of AZ31B and carbon-fiber–reinforced polymer joined by friction self-piercing riveting
13
作者 Yong Chae Lim Jiheon Jun +4 位作者 Donovan N.Leonard Yuan Li Jian Chen Michael P.Brady Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期434-445,共12页
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ... A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。 展开更多
关键词 Multi-material joining carbon fiberreinforced polymer AZ31B Friction self-piercing riveting Galvanic corrosion Mechanical joint strength
下载PDF
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites
14
作者 李媛媛 嵇宇 +5 位作者 谷志旗 李秋雅 何鸿喆 张岩 王萍 眭建华 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(cfrp) mixed modification laying angle
下载PDF
Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips
15
作者 Feras ALZOUBI 《Journal of Chongqing University》 CAS 2007年第4期305-310,共6页
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (C... This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side- bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results. 展开更多
关键词 钢筋混凝土 建筑物 建筑结构 计算方法
下载PDF
Investigating Some Parameters Affecting Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Laminate
16
作者 Azad A.Mohammed 《Journal of World Architecture》 2018年第5期1-6,共6页
In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For t... In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For this purpose,six reinforced concrete beams were cast and tested in the laboratory.Based on the obtained data,when CFRP laminate is applied to the tension face,too close to the steel rebar,the flexural strength of the strengthened beam is reduced.In general,the performance of the beam strengthened with one wide CFRP strip is better than that strengthened with two equivalent narrow strips.Ultimate load capacity of each strengthened beam was calculated based on the method given by the ACI 440.2R and compared with the test one.It is concluded that,to avoid the steel rebar-CFRP laminate interaction effect,the CFRP laminate depth-to-the effective depth ratio(df/d)should not be smaller than about 1.17. 展开更多
关键词 carbon fiber reinforced polymer concrete BEAM flexure strengthening
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
17
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
STUDYONULTRASONICVIBRATIONDRILLINGINCARBONFIBERREINFORCEDPOLYMERSZhangQixin;SunShiyu(HarbinInstituteofTechno... STUDYONULTRASONICVIBRATIONDRILLINGINCARBONFIBERREINFORCEDPOLYMERSZhangQixin;SunShiyu(HarbinInstituteofTechnologyFactory529,Be... 展开更多
关键词 carbon fiber reinforced polymerS composites ULTRASONIC VIBRATION DRILLING
全文增补中
Thermo-Stamping Process of Glass and Carbon-Fibre Reinforced Polymer Composites
18
作者 Walid Harizi Zoheir Aboura +1 位作者 Mylène Deléglise-Lagardère Valérie Briand 《Materials Sciences and Applications》 2020年第5期319-337,共19页
In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in orde... In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in order to reduce material costs. This study was specifically directed towards optimizing the impregnation of continuous glass and carbon fibres reinforcing two TP amorphous matrices, the polyphenylsulfone (PPSU) and polyetherimide (PEI), to obtain semi-finished products employed for aeronautical structures. The impregnation quality of inter and intra-yarns is analyzed and validated by optical and scanning micrographic observations conducted with an optical and a Scanning Electron Microscopies (SEM), respectively. The study showed that besides the process parameters and porosity distribution in the core of warp yarns, the impregnation quality depends on the surface properties of constituents. Desizing treatment has been carried out to improve the wettability of fibres by the TP matrices. 展开更多
关键词 THERMOPLASTIC Resin carbon-Fibre reinforced polymer (cfrp) Glass-Fibre-reinforced polymer (GFRP) Porosity Scanning Electron Microscopy (SEM)
下载PDF
CFRP及EWSS复合加固震损双层高架桥框架式桥墩恢复力模型研究
19
作者 许成祥 吴永昂 +1 位作者 胡序辉 肖良丽 《工程力学》 EI CSCD 北大核心 2024年第5期55-67,共13页
为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行... 为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行了低周往复加载破坏试验,获取了滞回曲线并提取骨架曲线,分析其滞回特性,提出一种弹性段和强化段为双折线、下降段为指数函数且考虑初始损伤的骨架曲线模型;采用试验数据回归拟合方法,定量描述了试件滞回曲线卸载刚度的退化规律,考虑了同级加载承载力退化和定点指向特征,建立了恢复力模型。研究结果表明:复合加固试件滞回曲线捏缩现象明显,呈倒S型,各滞回环分别相交于骨架曲线上正向、负向荷载为屈服荷载0.25倍的点,峰值荷载后EWSS产生包辛格效应;所提出的骨架曲线模型对中度震损和重度震损加固试件下降段指数函数的参数k建议取值分别为3.6和3.4;所建立的骨架曲线模型和恢复力模型计算结果与试验实测结果吻合较好,可为该类结构弹塑性地震反应分析提供依据。 展开更多
关键词 双层框架式桥墩 地震损伤 碳纤维布及外包型钢复合加固 滞回特性 恢复力模型
下载PDF
超声振动辅助磨削CFRP复合材料薄管撕裂损伤研究
20
作者 康仁科 陆冰伟 +4 位作者 陈凯良 李晟超 戴晶滨 董志刚 鲍岩 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期524-533,540,共11页
针对碳纤维增强复合材料(CFRP)薄管超声振动辅助磨削过程中存在撕裂损伤且形成原因不明确的问题,通过对M55J和T300复合材料薄管开展超声振动辅助磨削试验,探究了超声振幅、进给量及主轴转速对磨削力和撕裂尺寸的影响规律,通过对磨削过... 针对碳纤维增强复合材料(CFRP)薄管超声振动辅助磨削过程中存在撕裂损伤且形成原因不明确的问题,通过对M55J和T300复合材料薄管开展超声振动辅助磨削试验,探究了超声振幅、进给量及主轴转速对磨削力和撕裂尺寸的影响规律,通过对磨削过程的受力分析和对最大未变形切屑厚度的计算,分析了撕裂位置的形成原因和撕裂尺寸的变化规律。结果表明:磨削力随超声振幅的增大而减小,随进给量的增大而增大,与主轴转速的关联性较小;撕裂易出现于CFRP薄管内壁,其长度与高度随超声振幅的增大而减小,随进给量的增大而增大,随主轴转速的增大而减小。 展开更多
关键词 碳纤维增强复合材料 薄管 超声振动辅助磨削 磨削力 撕裂
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部