期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
1
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
High-sensitivity phase imaging eddy current magneto-optical system for carbon fiber reinforced polymers detection
2
作者 Jiang-Shan Ai Quan Zhou +5 位作者 Yi-Ping Liang Chun-Rui Feng Bing Long Li-Bing Bai Yong-Gang Wang Chao Ren 《Journal of Electronic Science and Technology》 EI CSCD 2023年第4期48-59,共12页
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems... This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems. 展开更多
关键词 carbon fiber reinforced polymers Defect detection Eddy current magneto-optical Nondestructive testing Phase imaging
下载PDF
Study of galvanic corrosion and mechanical joint properties of AZ31B and carbon-fiber–reinforced polymer joined by friction self-piercing riveting 被引量:1
3
作者 Yong Chae Lim Jiheon Jun +4 位作者 Donovan N.Leonard Yuan Li Jian Chen Michael P.Brady Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期434-445,共12页
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ... A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。 展开更多
关键词 Multi-material joining carbon fiber–reinforced polymer AZ31B Friction self-piercing riveting Galvanic corrosion Mechanical joint strength
下载PDF
Mechanical joint performances of friction self-piercing riveted carbon fiber reinforced polymer and AZ31B Mg alloy
4
作者 Yuan Li Yong Chae Lim +2 位作者 Jian Chen Jiheon Jun Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3367-3379,共13页
Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load... Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing. 展开更多
关键词 Friction self-piercing riveting Magnesium alloy carbon fiber reinforced polymer Dynamic recrystallization Fatigue life Crack initiation
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
5
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th... This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites. 展开更多
关键词 carbon fiber reinforced polymers composites Ultrasonic vibration drilling
全文增补中
Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite 被引量:3
6
作者 S.M.J.Razavi R.Esmaeely Neisiany +2 位作者 S.Nouri Khorasani S.Ramakrishna F.Berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期126-131,共6页
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t... This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. 展开更多
关键词 carbon fiber reinforced polymer Delamination Fracture test Nanofibers Al2O3 nanoparticles
下载PDF
Improvement of interleaving Aramid pulp microfibers on compressive strengths of carbon fiber reinforced polymers with and without impact
7
作者 Fei CHENG Guangming YANG +2 位作者 Yunsen HU Bingyan YUAN Xiaozhi HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期459-470,共12页
Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer(CFRP)composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp(AP)micro/nano-fibers.10-ply CFRP speci... Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer(CFRP)composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp(AP)micro/nano-fibers.10-ply CFRP specimens with 0,2,4,6,8 g/m^(2)AP were tested under uniaxial compression.Those flexible AP fibers,filling the resin-rich regions and further constructing the fiber bridging at the ply interfaces,can effectively suppress delamination growth and lead to very good improvements both in the compressive strength and the elastic modulus.The CFRP specimen with an optimum interlay thickness has a distinct shear failure mode instead of the typical delamination cracking along the direction of continuous carbon fibers.Compressive Strengths After Impacts(CAI)of 12.35 J were also measured,up to 90%improvement in CAI has been observed.It is concluded those ultra-thin interlays of non-woven AP micro/nano-fibers are beneficial to design and manufacture“high strength”CFRP composites. 展开更多
关键词 Compressive strength carbon fiber Reinforced polymer(CFRP) Aramid pulp INTERLEAVING Interfacial reinforcing
原文传递
Galvanic Effect Between Galvanized Steel and Carbon Fiber Reinforced Polymers 被引量:3
8
作者 Chi Zhang Da-Jiang Zheng Guang-Ling Song 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第4期342-351,共10页
The galvanic corrosion behavior of carbon fiber reinforced polymers (CFRPs) GM-CFRP and Tepex-CFRP in contact with a Zn-coated DP590 steel in solution containing 0.9 wt% NaCl+ 0.1 wt% CaCl2 + 0.075 wt% NaHCO3 was ... The galvanic corrosion behavior of carbon fiber reinforced polymers (CFRPs) GM-CFRP and Tepex-CFRP in contact with a Zn-coated DP590 steel in solution containing 0.9 wt% NaCl+ 0.1 wt% CaCl2 + 0.075 wt% NaHCO3 was investigated. The results showed that the GM-CFRP/steel couple was initially more resistant to galvanic corrosion, but its galvanic corrosion activity gradually became higher than the Tepex-CFRP/steel couple. The different galvanic behaviors of these two couples were discussed based on the electrochemical performance of GM-CFRP, Tepex-CFRP and DP590 coupons in the testing solution. 展开更多
关键词 carbon fiber reinforced polymer (CFRP) COMPOSITE carbon fiber STEEL Galvanic effect
原文传递
Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers 被引量:2
9
作者 Y. Karpat O. Bahtiyar 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第4期300-308,共9页
Carbon fiber reinforced polymers (CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix. Polycrystalline diamond (PCD) drills ar... Carbon fiber reinforced polymers (CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix. Polycrystalline diamond (PCD) drills are commonly employed in CFRP drilling to satisfy hole quality conditions with an acceptable tool life. Drill geometry is known to be influential on the hole quality and productivity of the process. Considering the variety of CFRP laminates and available PCD drills on the market, selecting the suitable drill design and process parameters for the CFRP material being machined is usually per- formed through trial and error, In this study, machining performances of four different PCD drills are investigated. A mechanistic model of drilling is used to reveal trade-offs in drill designs and it is shown that it can be used to select suitable feed rate for a given CFRP drilling process. 展开更多
关键词 MACHINING Drilling - carbon fiber reinforced polymer (CFRP) Polycrystalline diamond (PCD) DELAMINATION
原文传递
碳纤维增强复合材料加固混凝土粘结性能试验 被引量:12
10
作者 佘泽昇 雷冬 +2 位作者 何锦涛 朱飞鹏 白鹏翔 《科学技术与工程》 北大核心 2022年第6期2428-2436,共9页
碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专... 碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专门设计的试验装置进行弯曲剪切试验来研究CFRP-混凝土界面的粘结性能。利用数字图像相关(digital image correlation,DIC)法得到的应变场确定碳纤维布的脱粘长度,同时对碳纤维增强材料的性能进行了理论分析,探讨了试验中的力学响应。结果表明:弯剪破坏的原因是弯矩的增大导致界面粘结强度和极限荷载的降低。通过对比弯剪试验和理论应变分布曲线,证明试验的有效性。粘结区在弯曲作用下产生的正应力有一个固定的有效区域,在该区域以外不会产生正应力。因此,在工程应用中,确定碳纤维布板的剥离长度可以减少维护工作,碳纤维布-钢筋混凝土在受弯曲和拉伸的共同作用下,可以在加载端有效应力区域内进行再加固,增加使用寿命。 展开更多
关键词 碳纤维增强复合材料(carbon fiber reinforced polymer CFRP)-混凝土 弯剪试验 界面粘结应力 弯剪破坏 本构模型
下载PDF
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode 被引量:7
11
作者 Sun Zhiguo Wang Dongsheng +1 位作者 Du Xiuli Si Bingjun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期553-567,共15页
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were f... An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided. 展开更多
关键词 bridge piers rapid repair after earthquakes flexural-shear failure carbon fiber reinforced polymers (CFRP) cyclic testing
下载PDF
Flexural Performance of CFRP-Bamboo Scrimber Composite Beams 被引量:4
12
作者 Xizhi Wu Xueyou Huang +1 位作者 Xianjun Li Yiqiang Wu 《Journal of Renewable Materials》 SCIE 2019年第12期1295-1307,共13页
This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model w... This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam. 展开更多
关键词 Bamboo scrimber carbon fiber reinforced polymer(CFRP) flexural performance adhesive debonding
下载PDF
Experimental Study on Tensile Properties of Steel Plate Bonded by CFRP 被引量:1
13
作者 卢亦焱 张号军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期727-732,共6页
The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the comp... The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the composite specimens were investigated in detail. The influence of different ratio of CFRP on bearing capacity, loading-strain curves, compound modulus, rigidity and ductility of the composite specimens was analyzed. The experimental results indicate that the composite specimen can work harmonically and the steel plate does not break in tension. Comparing with steel plate, the bearing capacity and the rigidity of the composite specimens increase and ductility decreases. The bearing capacity increases sharply with the increase in the number of layers of CFRP. With the increase in CFRP, the yield strength increases slightly and ductility decreases. The experimental researches can provide a theoretical basis for engineering application of combination strengthening. 展开更多
关键词 steel plate carbon fiber Reinforced polymer (CFRP) combination strengthening tensile properties experimental study
下载PDF
Damage Detection for CFRP Based on Planar Electrical Capacitance Tomography 被引量:1
14
作者 Wenru Fan Chi Wang 《Structural Durability & Health Monitoring》 EI 2020年第4期303-314,共12页
Due to the widespread use of carbon fiber reinforced polymer/plastic(CFRP),the nondestructive structural health monitoring for CFRP is playing an increasingly essential role.As a nonrad iative,noninvasive and nondestr... Due to the widespread use of carbon fiber reinforced polymer/plastic(CFRP),the nondestructive structural health monitoring for CFRP is playing an increasingly essential role.As a nonrad iative,noninvasive and nondestructive detection technique,planar electrical capacitance tomography(PECT)electrodes array is employed in this paper to reconstruct the damage image according to the calculated dielectric constant changes.The shape and duty ratio of PECT electro-des are optimized according to the relations between sensitivity distribution and the dielectric constant of different anisotropic degrees.The sensitivity matrix of optimized PECT sensor is more uniform as the result shows,because the sensitiv-ity of insensitivity area can be increased by adding rotation of optimized electro-des.The reconstructed image qualities due to different PECT arrays and different damage locations are investigated at last.The simulation results indicate that:PECT can be used to detect the surface damage of CFRP;the sensitivity matrix of PECT for CFRP is highly relevant with the degree of anisotropic dielectric con-stant;the rotatable PECT sensor with rotation has better performance in unifor-mity of sensitivity;for different damage locations,the rotatable sensor with rotation has better image quality in most cases. 展开更多
关键词 Planar electrical capacitance tomography(PECT) carbon fiber reinforced polymer/plastic(CFRP) damage detection image reconstruction
下载PDF
Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances
15
作者 Houjun KANG Tieding GUO +2 位作者 Weidong ZHU Junyi SU Bingyu ZHAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第5期649-678,共30页
A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-p... A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded. 展开更多
关键词 inclined carbon fiber reinforced polymer(CFRP)cable BIFURCATION nonlinear dynamics internal resonance external resonance
下载PDF
Experimental Study on the Compressive Behavior of CFRP/ECCs
16
作者 孙文彬 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期295-302,共8页
In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,2... In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,20,or 40 mm rounded corner radii at vertical edges. A 100 mm overlap in the direction of fibers was provided to ensure a proper bond. Uniaxial compression tests were conducted to investigate the compressive behaviors including the axial strength,stress-strain response,and ductility. It is evident that the CFRP tube confinement can improve the compressive behavior of concrete core,in terms of axial compressive strength or axial deformability. Based on the experimental results and some existing test database attained by other researchers,a design-oriented model is developed. The predictions of the model for CFRP/ECCs show good agreement with test results. 展开更多
关键词 carbon fiber reinforced polymer (CFRP) Concrete column Encasement CONFINEMENT Compressive behavior Enhancement parameter Design-oriented model
下载PDF
Experimental Investigation on Contribution of CFRP Attachment to Durability of Reinforced Concrete Structure Subjected to Chloride Attack
17
作者 陈凤山 赵国藩 潘德强 《Journal of Southwest Jiaotong University(English Edition)》 2006年第1期73-78,共6页
The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered a... The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered as a part of corrosion prevention system of strengthened concrete structures subjected to chloride ingress, and the contribution of CFRP should be considered in evaluation of durability of reinforced concrete structures with externally-bonded CFRP. With the effective shielding function of CFRP considered, an equation for residual lifetime prediction of concrete structures with externally-bonded CFRP is derived from Fick's dispersion law. CFRP has two functions for coastal concrete structures, including strengthening and increasing durability as part of corrosion prevention system. 展开更多
关键词 carbon fiber reinforced polymer Chloride ion System of corrosion prevention evaluation Durability service life prediction
下载PDF
A novel domain decomposition-based model for efficient dynamic predictions of large composite machine tools
18
作者 YU YangBo JI Yu Lei +2 位作者 CHEN YanRen XU Kun BI QingZhen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1765-1782,共18页
We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite m... We propose a large combined moving component composed of carbon fiber reinforced polymer(CFRP)laminates for making lightweight machine tools with high dynamic performance.The accurate dynamic prediction of composite machine tools is essential for the new generation machine tool.This paper aims to address two challenges in numerical dynamic modeling and the design of composite machine tools to enhance development efficiency.(1)Anisotropic composite laminates,which form the composite machine tool,exhibit coupling in various directions.We propose the generalized continuity condition of the boundary to tackle this dynamic modeling challenge.(2)Composite machine tools feature numerous composite-metal coupled structures.The mechanical model correction of isotropic metals is performed to address their dynamics.We take the example of a five-axis gantry machine tool with composite moving parts,establish a dynamic model for efficient prediction,and verify it through simulation and experimentation.The proposed method yields remarkable results,with an average relative error of only 3.85%in modal frequency prediction and a staggering 99.7%reduction in solution time compared to finite element analysis.We further discuss the dynamic performance of the machine tool under varied stacking angles and layer numbers of the composite machine tool.We propose general design criteria for composite machine tools to consider the modal frequency and manufacturing cost of machine tools. 展开更多
关键词 machine tool dynamics carbon fiber reinforced polymer composite laminates
原文传递
Development and sensing performance study of a smart CFRP cable assembled by multi-group anchorage units
19
作者 Lian Shao Huanyu Yang +1 位作者 Jinping Ou Zhi Zhou 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第3期286-302,共17页
Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This pa... Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This paper presents a new smart CFRP cable that combines the self-sensing rods with embedded sensors and the anchorage system using extrusion technology.By embedding optical fiber(OF)and coaxial cable Fabry-Perot interferometer(CCFPI)into CFRP rods respectively,two types of self-sensing rods(CFRP-OF rod and CFRP-CCFPI rod)were fabricated.A new anchorage unit using an extrusion process was proposed as a basic component of smart CFRP cables.Anchorage units holding a CFRP-OF rod and a CFRP-CCFPI rod were tested to obtain their sensing and mechanical properties.Three ancho-rage units were assembled to form a smart CFRP cable with self-sensing functionality.A verification test was carried out to confirm the capabil-ity of monitoring the cable force.The test results demonstrate that the smart CFRP cable composed of multiple anchorage units has good potential in bridge engineering. 展开更多
关键词 carbon fiber reinforced polymer smart cable sensor extrusion process bridge engineering
原文传递
基于激光热弹效应的碳纤维增强树脂复合材料缺陷检测机理研究 被引量:3
20
作者 葛进 程小劲 尚建华 《光电子.激光》 CAS CSCD 北大核心 2022年第1期83-90,共8页
碳纤维增强树脂基复合材料(carbon fiber reinforced resin polymer, CFRP)在周期载荷作用下产生的基体裂纹、纤维断裂等微损伤的累积会严重影响CFRP的力学性能,微损伤尺寸较小且位置分散,传统的无损检测方法难以准确识别。激光超声检... 碳纤维增强树脂基复合材料(carbon fiber reinforced resin polymer, CFRP)在周期载荷作用下产生的基体裂纹、纤维断裂等微损伤的累积会严重影响CFRP的力学性能,微损伤尺寸较小且位置分散,传统的无损检测方法难以准确识别。激光超声检测技术具有非接触、检测速度快、测量范围广等优点,特别是结合激光的远距离激励和大角度入射的优势,在大尺寸、曲面形式结构材料的损伤检测方面有巨大的潜力。本文基于激光热弹效应,在分析激光作用到CFRP后的温度、应力和位移场分布的基础上,对CFRP内部超声波的产生过程和传播特性进行了系统研究。并通过对CFRP中不同处存在缺陷时的超声波回波信号的分析比较,得到缺陷位置与回波信号特性之间的对应关系,从而实现从回波信号特征反演出CFRP中缺陷位置的关键信息。 展开更多
关键词 激光超声 热弹效应 碳纤维增强树脂基复合材料(carbon fiber reinforced resin polymer CFRP) 损伤检测
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部