In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Carbon black and carbon fibers of different lengths were introduced in different matrices at different ratios to explore their microwave dielectric properties under 8.2 GHz-12.4 GHz. It is found that the actual dielec...Carbon black and carbon fibers of different lengths were introduced in different matrices at different ratios to explore their microwave dielectric properties under 8.2 GHz-12.4 GHz. It is found that the actual dielectric constants of the samples containing carbon black are in a two-order function of the contents of carbon black (ε', ε"=Av2+Bv+C) and the complex dielectric constants show an obvious frequency response. Of the added fibers of different lengths, the 4 mm-long one could well disperse in the matrices having not only good frequency response, but also larger real parts, imaginary parts and loss values. The imaginary parts and the loss values (tanδ)of the samples with 4 mm-long carbon fibers added increase linearly with the contents of fiber increasing. So it is practicable to adjust the dielectric parameters of the material in a wide range by changing the added amount of carbon black, and the carbon fiber or altering the lengths of the carbon fiber added.展开更多
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments...To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.展开更多
In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transform...In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.展开更多
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE...Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.展开更多
The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the pr...The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.展开更多
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth...Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.展开更多
Metal-loaded activated carbon fibers (ACFs) were prepared by impregnation and characterized by N2 adsorption at 77K, XRD, XPS and SEM. Their properties on SO2 removal were examined in a tubular fixed bed reactor wit...Metal-loaded activated carbon fibers (ACFs) were prepared by impregnation and characterized by N2 adsorption at 77K, XRD, XPS and SEM. Their properties on SO2 removal were examined in a tubular fixed bed reactor with a model flue gas. Cobalt-loaded ACF showed the best activity among the prepared metal-loaded ACFs and a constant removal ratio of SO2 above 87% during continuous exposure to the flow of SO2/O2/H2O/N2 at 45℃ for more than 216h. The characteristic of the prepared loaded-ACFs showed that the exceptional activity of Co-ACF was attributed to the high amount of active sites due to modification by loading cobalt.展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Four...To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.展开更多
Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a...Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests. The reflec- tivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%, 0.4wt%, 0.6wt%, and 1.0wt%. The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%. The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances. After pyrocarbon is deposited on the fiber, all the refiectivity data are far greater. They are all above -10 dB and display mainly wave-reflecting performances.展开更多
The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechani...The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.展开更多
Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated car...Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated carbon fiber/epoxy composite was analyzed. It was found that rare earth treatment led to an increase of fiber surface roughness, improvement of oxygeaa-containing groups, and introduction of rare earth element on the carbon fiber surface. As a result, coordination linkages between fibers and rare earth, and between rare earth and resin matrix were formed separately, thereby the interlaminar shear strength (ILSS) of composites increased, which indicated the improvement of the interfacial adhesion between fibers and matrix resin resulting from the increase of carboxyl and carbonyl.展开更多
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up t...Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.展开更多
The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites...The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites under different processing conditions were prepared through PIF-processing. SEM observations showed that the interfaces adhesion between CFs and PPS became stronger and ductile fracture mainly occurred in PPS matrix. This brought to a great increase of both strength and toughness by about 2 folds, when the composites were processed at 240 ℃ and under 263 MPa. The results in differential scanning calorimetry(DSC) and X-ray diffraction(XRD) measurements indicated more regular crystalline structures and orientation of lamellae formed during PIF-processing.展开更多
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microsc...The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.展开更多
Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In o...Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.展开更多
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3...3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.展开更多
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金National Natural Science Foundation of China (50572090)
文摘Carbon black and carbon fibers of different lengths were introduced in different matrices at different ratios to explore their microwave dielectric properties under 8.2 GHz-12.4 GHz. It is found that the actual dielectric constants of the samples containing carbon black are in a two-order function of the contents of carbon black (ε', ε"=Av2+Bv+C) and the complex dielectric constants show an obvious frequency response. Of the added fibers of different lengths, the 4 mm-long one could well disperse in the matrices having not only good frequency response, but also larger real parts, imaginary parts and loss values. The imaginary parts and the loss values (tanδ)of the samples with 4 mm-long carbon fibers added increase linearly with the contents of fiber increasing. So it is practicable to adjust the dielectric parameters of the material in a wide range by changing the added amount of carbon black, and the carbon fiber or altering the lengths of the carbon fiber added.
基金Project(51375369)supported by the National Natural Science Foundation of ChinaProject(SYG201137)supported by the Science and Technology Development Program of Suzhou,China
文摘To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.
文摘In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.
文摘Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.
文摘The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.
基金Project supported by the National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.
文摘Metal-loaded activated carbon fibers (ACFs) were prepared by impregnation and characterized by N2 adsorption at 77K, XRD, XPS and SEM. Their properties on SO2 removal were examined in a tubular fixed bed reactor with a model flue gas. Cobalt-loaded ACF showed the best activity among the prepared metal-loaded ACFs and a constant removal ratio of SO2 above 87% during continuous exposure to the flow of SO2/O2/H2O/N2 at 45℃ for more than 216h. The characteristic of the prepared loaded-ACFs showed that the exceptional activity of Co-ACF was attributed to the high amount of active sites due to modification by loading cobalt.
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
文摘To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.
基金supported by the National Natural Science Foundation of China (No.50172039)
文摘Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests. The reflec- tivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%, 0.4wt%, 0.6wt%, and 1.0wt%. The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%. The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances. After pyrocarbon is deposited on the fiber, all the refiectivity data are far greater. They are all above -10 dB and display mainly wave-reflecting performances.
基金Founded by the National Natural Science Foundation of China(No.50333070)
文摘The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.
基金Project supported by the National Natural Science Foundation of China (50333030)
文摘Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated carbon fiber/epoxy composite was analyzed. It was found that rare earth treatment led to an increase of fiber surface roughness, improvement of oxygeaa-containing groups, and introduction of rare earth element on the carbon fiber surface. As a result, coordination linkages between fibers and rare earth, and between rare earth and resin matrix were formed separately, thereby the interlaminar shear strength (ILSS) of composites increased, which indicated the improvement of the interfacial adhesion between fibers and matrix resin resulting from the increase of carboxyl and carbonyl.
基金Project supported by the Science Fund for Distinguished Young Scholars of Heilongjiang Province, ChinaProject supported by the Program for Excellent Team in Harbin Institute of Technology
文摘Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.
基金Funded by the National Natural Science Foundation of China(No.21404023)the Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(No.LK1417)the Fundamental Research Funds for the Central Universities(2232015D-10)
文摘The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites under different processing conditions were prepared through PIF-processing. SEM observations showed that the interfaces adhesion between CFs and PPS became stronger and ductile fracture mainly occurred in PPS matrix. This brought to a great increase of both strength and toughness by about 2 folds, when the composites were processed at 240 ℃ and under 263 MPa. The results in differential scanning calorimetry(DSC) and X-ray diffraction(XRD) measurements indicated more regular crystalline structures and orientation of lamellae formed during PIF-processing.
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. 2003.57)
文摘The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.
基金the Key Laboratory Fundings of Science and Technology Commission of Shanghai Municipality,China(No. 10521100404,No.10JC1400400)Foundation of Key Laboratory of Textile Science & Technology,Ministry of Education of China(No. 11D10114)
文摘Plasma treatment has been known as an effective way to improve the surface bonding between the reinforcement material and the matrix, by modifying the surface morphology and the chemical composes of the material. In order to investigate the effects of atmospheric dielectric barrier discharge (DBD) plasma treatment on the surface properties of polyacrylonitrile-based (PAN-based) carbon fiber, atomic force microscope(AFM), X-ray photoelectron spectroscopy(XPS), and contact angle test were introduced to compare different treatment duration. The interfacial adhesion of carbon fiber/epoxy (CF/EP) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. And the tensile strength test and Weibull analysis were carried out to observe whether the etching could affect the strength. The results prove that the DBD plasma improves the surface properties of the carbon fiber. Further, when the treatment time was around 90 s, the roughness and oxygen containing group of the carbon fiber reached the peak values. Also, the fiber showed the best adhesion to the polymer in contact angle test and the optimum interfacial shear strength (IFSS) in fragmentation test. The Weibull analyses of the tensile data revealed no substantial changes in the tensile strength within the treatment time of 180 s.
文摘3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.