The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the comp...The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the composites.The relationship between the performance of depositing coat and pH value,temperature,reaction time and the way of agitation was studied.Results show that the depositing quality is stable under pH between 4.5 and 5.0,temperature between 75 ℃ and 85 ℃,reaction time for 10 min and air agitation.The uniform and compact nickel layer deposited on carbon fibers was proved by XRD and SEM,and the electrical resistivity of carbon fibers with nickel coating was tested.Results indicate that the electrical resistivity of carbon fibers with electroless nickel plating is decreased by an order of magnitude compared with that of carbon fibers.It means that nickel coating can greatly improve the electromagnetic interference shielding properties of carbon fibers.展开更多
The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and ...The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and hydrolysis resistance.However,PEEK exhibits a high volume resistivity(1014Ω·m)and surface resistance(1015Ω).This limits its use in the electronics and electromagnetic field.To decrease the resistivity and reduce the thermal expansion of composite materials,this paper modified the PEEK with carbon fiber(CF)and metalized the composites with the electroless Ni-P alloy plating through self-catalyzed deposition,which brings about high conductivity,thermal conductivity,high-temperature weldability resistance and high-low temperature resistance property.The composites and metal coatings were characterized by metallurgical microscope,SEM,and resistance tester.The metal coatings have a uniform surface and low surface resistance less than 10 mΩ~20 mΩ.The thermal shock test at 250°C and the-70°C^100°C high-low temperature environment test were measured.Compared with the electroless plating on unmodified peek,there is no bump and crack,etc.after testing,which shows a good adhesion between the metal coatings and PEEK-CF,high-low temperature resistance as well as high temperature weldability.The researches on the modification of PEEK by carbon fiber and its surface metallization provide technical support for the application of PEEK Composites in radar antenna and other electronic fields.展开更多
Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanni...Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper(NCFP). Vacuum assisted infusion molding process(VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper(CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference(EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness(SE) at 8wt% fiber content, 35 d B and 30 d B, respectively, and reflection was the dominant shielding mechanism.展开更多
Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and cataly...Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.展开更多
The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most...The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most original preparation methods cannot simultaneously achieve good electrical conductivity and me- chanical performance. In this paper, we propose a novel approach to fabricating bipolar plates with car- bon plastic materials, including four steps, namely coating a poly (vinylidene fluoride) (PVDF) solution onto carbon felt, solvent evaporation, hot-pressing, and surface modification. The resulting bipolar plates showed high conductivity, good mechanical strength, and corrosion resistance. Surface modification by coating with carbon nanotubes (CNTs) removed the PVDF-rich layer from the surface of the carbon fibers. The high surface area of the CNT withdrew PVDF resin from the carbon fiber surface, and promoted the formation of a conductive network. The flexibility and battery charge-discharge cycle measurements showed that the composite bipolar plates can meet requirements for VFB applications.展开更多
The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-...The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.展开更多
The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the pr...The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.展开更多
Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simult...Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simultaneously improvements in interfacial shear strength(IFSS)of carbon fiber/epoxy composites and the electrochemical activity has been achieved.Compared with CF and CF-Ni(OH)_(2)composites,the IFSS of CF-Ni(OH)_(2)-PEA/epoxy composite respectively increased 7.9%and 45.4%,which was put down to the covalent bonding of Ni(OH)_(2)-PEA coating with fiber and epoxy matrix,as well as the effective stress transfer by the uniform honeycomb structure of Ni(OH)_(2).In aqueous KOH electrolyte,the CF-Ni(OH)_(2)-PEA electrode presented the maximum specific capacitance of 689.98 F·g^(-1)at 5 m V·s^(-1),572.28 F·g^(-1)at a current density of 0.5 A·g^(-1)due to the strong adhesion of carbon fiber with Ni(OH)_(2)by PEA,the reservation of the threedimensional hollow honeycomb structure of Ni(OH)_(2)for easy ion-transport and–NH_(2)functional groups from PEA for providing more active sites.The excellent performance of CF-Ni(OH)_(2)-PEA reinforcement demonstrates its promising potential for application in high performance composites with integrated structure and function,which shows great advantages in various fields of aerospace,energy,electronics,automobile,civil engineering,sports,etc.展开更多
The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating wer...The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.展开更多
Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix compo...Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix composites at low cost.However,the low mechanical properties as well as the intrinsic brittleness limit their technological implementations,and it is necessary to enhance the mechanical properties of geopolymers by adopting various kinds of reinforcements.In this work,therefore,two⁃dimensional continuous carbon fiber(Cf)reinforced phosphate⁃based geopolymer composites(Cf/geopolymer)were prepared through ultrasonic⁃assisted impregnation method.Effects of acetone treatment and high⁃temperature treatment on the properties of Cf/geopolymer composites were studied by X⁃ray photoelectron spectroscopy(XPS),X⁃ray diffraction(XRD),and scanning electron microscopy(SEM).Results of the study proved that acetone treatment plays a key role in ameliorating the interfacial interaction between Cf and phosphate matrix,which can thus enhance the mechanical properties of Cf/geopolymer composites.The Cf/geopolymer composites prepared by acetone⁃treated Cf had a flexural strength of 156.1 MPa and an elastic modulus of 39.7 GPa in Y direction.Moreover,an additional Sol⁃SiO2 re⁃impregnation treatment could further enhance the mechanical properties of the acetone⁃treated Cf/geopolymer composites by repairing the cracks and filling the pores.The results in this paper not only provide insights into the surface modification of Cf,but also report a facile and low⁃cost preparation route for Cf/geopolymer composites with potential applications in aerospace and defense technology.展开更多
文摘The electroless nickel plating on the surface of carbon fibers was prepared by pretreating the carbon fibers in order to increase their conductivity,and consequently enhance the EMI shielding effectiveness of the composites.The relationship between the performance of depositing coat and pH value,temperature,reaction time and the way of agitation was studied.Results show that the depositing quality is stable under pH between 4.5 and 5.0,temperature between 75 ℃ and 85 ℃,reaction time for 10 min and air agitation.The uniform and compact nickel layer deposited on carbon fibers was proved by XRD and SEM,and the electrical resistivity of carbon fibers with nickel coating was tested.Results indicate that the electrical resistivity of carbon fibers with electroless nickel plating is decreased by an order of magnitude compared with that of carbon fibers.It means that nickel coating can greatly improve the electromagnetic interference shielding properties of carbon fibers.
文摘The poly-ether-ether-ketone(PEEK)polymer is a semi-crystalline aromatic thermoplastic with outstanding features,such as superior mechanical properties,thermal stability,radiation resistance and excellent chemical and hydrolysis resistance.However,PEEK exhibits a high volume resistivity(1014Ω·m)and surface resistance(1015Ω).This limits its use in the electronics and electromagnetic field.To decrease the resistivity and reduce the thermal expansion of composite materials,this paper modified the PEEK with carbon fiber(CF)and metalized the composites with the electroless Ni-P alloy plating through self-catalyzed deposition,which brings about high conductivity,thermal conductivity,high-temperature weldability resistance and high-low temperature resistance property.The composites and metal coatings were characterized by metallurgical microscope,SEM,and resistance tester.The metal coatings have a uniform surface and low surface resistance less than 10 mΩ~20 mΩ.The thermal shock test at 250°C and the-70°C^100°C high-low temperature environment test were measured.Compared with the electroless plating on unmodified peek,there is no bump and crack,etc.after testing,which shows a good adhesion between the metal coatings and PEEK-CF,high-low temperature resistance as well as high temperature weldability.The researches on the modification of PEEK by carbon fiber and its surface metallization provide technical support for the application of PEEK Composites in radar antenna and other electronic fields.
基金Funded by the National Natural Science Foundation of China(No.51373129)
文摘Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper(NCFP). Vacuum assisted infusion molding process(VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper(CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference(EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness(SE) at 8wt% fiber content, 35 d B and 30 d B, respectively, and reflection was the dominant shielding mechanism.
基金supported by National Natural Science Foundation of China(No.50876077)
文摘Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.
基金financial support from the National Natural Science Foundation of China (21776154)the National Basic Research Plan (2012AA051203)
文摘The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most original preparation methods cannot simultaneously achieve good electrical conductivity and me- chanical performance. In this paper, we propose a novel approach to fabricating bipolar plates with car- bon plastic materials, including four steps, namely coating a poly (vinylidene fluoride) (PVDF) solution onto carbon felt, solvent evaporation, hot-pressing, and surface modification. The resulting bipolar plates showed high conductivity, good mechanical strength, and corrosion resistance. Surface modification by coating with carbon nanotubes (CNTs) removed the PVDF-rich layer from the surface of the carbon fibers. The high surface area of the CNT withdrew PVDF resin from the carbon fiber surface, and promoted the formation of a conductive network. The flexibility and battery charge-discharge cycle measurements showed that the composite bipolar plates can meet requirements for VFB applications.
文摘The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.
文摘The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.
基金supported by the National Natural Science Foundation of China(No.51603169)Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JQ5050)Natural Science Foundation of Shaanxi University of Science&Technology(No.2016QNBJ-12)。
文摘Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simultaneously improvements in interfacial shear strength(IFSS)of carbon fiber/epoxy composites and the electrochemical activity has been achieved.Compared with CF and CF-Ni(OH)_(2)composites,the IFSS of CF-Ni(OH)_(2)-PEA/epoxy composite respectively increased 7.9%and 45.4%,which was put down to the covalent bonding of Ni(OH)_(2)-PEA coating with fiber and epoxy matrix,as well as the effective stress transfer by the uniform honeycomb structure of Ni(OH)_(2).In aqueous KOH electrolyte,the CF-Ni(OH)_(2)-PEA electrode presented the maximum specific capacitance of 689.98 F·g^(-1)at 5 m V·s^(-1),572.28 F·g^(-1)at a current density of 0.5 A·g^(-1)due to the strong adhesion of carbon fiber with Ni(OH)_(2)by PEA,the reservation of the threedimensional hollow honeycomb structure of Ni(OH)_(2)for easy ion-transport and–NH_(2)functional groups from PEA for providing more active sites.The excellent performance of CF-Ni(OH)_(2)-PEA reinforcement demonstrates its promising potential for application in high performance composites with integrated structure and function,which shows great advantages in various fields of aerospace,energy,electronics,automobile,civil engineering,sports,etc.
文摘The electroless nickel plated graphite fibers reinforced aluminum matrix composites (Gr(Ni))/Al) were produced by squeeze casting, and the microstructure of Gr(Ni)/Al composite and surface behavior of Ni-P coating were studied. The optimum process of electroless Ni-P plating included: burning to get rid of glue→degreasing→neutralization→acidulating→sensitizing→activation→electroless plating. The surface analysis results show that the electroless nickel plating can diffuse into the graphite fiber surface during the squeeze casting, and the Ni-P coating and aluminum alloys can produce brittle phase NiAl3 or NiAl. The X-ray diffraction(XRD) results indicate that Al4C3 is so little that no Al4C3 peaks are found, and the harmful Al4C3 can be decreased by the electroless plating Ni-P coating. The coating improves the interfacial bonding of continuous graphite fibers reinforced aluminum matrix composites.
基金National Natural Science Foundation of China(Grant Nos.51872063,51832002 and 51621091)the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2019E002)the National Key Research and Development Program of China(Grant No.2017YFB0703200)。
文摘Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix composites at low cost.However,the low mechanical properties as well as the intrinsic brittleness limit their technological implementations,and it is necessary to enhance the mechanical properties of geopolymers by adopting various kinds of reinforcements.In this work,therefore,two⁃dimensional continuous carbon fiber(Cf)reinforced phosphate⁃based geopolymer composites(Cf/geopolymer)were prepared through ultrasonic⁃assisted impregnation method.Effects of acetone treatment and high⁃temperature treatment on the properties of Cf/geopolymer composites were studied by X⁃ray photoelectron spectroscopy(XPS),X⁃ray diffraction(XRD),and scanning electron microscopy(SEM).Results of the study proved that acetone treatment plays a key role in ameliorating the interfacial interaction between Cf and phosphate matrix,which can thus enhance the mechanical properties of Cf/geopolymer composites.The Cf/geopolymer composites prepared by acetone⁃treated Cf had a flexural strength of 156.1 MPa and an elastic modulus of 39.7 GPa in Y direction.Moreover,an additional Sol⁃SiO2 re⁃impregnation treatment could further enhance the mechanical properties of the acetone⁃treated Cf/geopolymer composites by repairing the cracks and filling the pores.The results in this paper not only provide insights into the surface modification of Cf,but also report a facile and low⁃cost preparation route for Cf/geopolymer composites with potential applications in aerospace and defense technology.