Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vig...Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vigorous development of science,technology and social economy in China,the development of bridge projects has also been accelerated to a large extent.In recent years,China has not only studied on how to strengthen the performance of concrete,steel and other materials in bridge projects,but also the performance of the recently developed smart,nano-,fibrous and other types of materials.This paper focuses on the application strategy of carbon fiber composite materials in bridge reconstruction projects to serve as a reference.展开更多
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments...To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr...A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.展开更多
The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can se...The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.展开更多
The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of ce...The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.展开更多
The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Speci...The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.展开更多
An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and co...An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and compression performance tests.It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber.The used material succeeds in producing significant vibrations damping(vibration attenuation effect is superior to that obtained with conventional alloy materials).展开更多
In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional l...In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.展开更多
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ...Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.展开更多
The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionaliza...The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionalization treatment is particularly important to unleash the full potential of the superior mechanical properties of dry-jet wet spun CFs.In this study,the effects of electrochemical oxidation treatment time and current density on the surface structures and the mechanical properties of dry-jet wet spun CFs were investigated.The interlaminar shear strength of the CFs improves significantly from 69 to 84 MPa after 120 s of treatment.Further structural analysis reveals that the improvements are due to the addition of oxygen-containing functional groups and the optimization of the morphology on the surface of the CFs.展开更多
Carbon fibers reinforced lithium aluminosilicate matrix composites(Cf/LAS)were prepared by slurry infiltration combined with a hot press procedure.The friction,wear behavior,and wear mechanisms of Cf/LAS composites un...Carbon fibers reinforced lithium aluminosilicate matrix composites(Cf/LAS)were prepared by slurry infiltration combined with a hot press procedure.The friction,wear behavior,and wear mechanisms of Cf/LAS composites under dry sliding conditions were investigated.The results show that the coefficient of friction(COF)initially increased with the increase in carbon fiber content,and reached the maximum value of 0.20 for the 33%Cf/LAS composite.The COF increased sharply with increasing sample temperature from RT to 300℃.The COF remained stable in the temperature range of 300–500℃.The two wear mechanisms of LAS glass-ceramics are fatigue wear and abrasive wear.The Cf/LAS composites demonstrate slight spalling and shallow scratches.These results show that carbon fibers improve the mechanical properties and wear resistance of Cf/LAS composites.展开更多
Microwave irradiation was used to reduce the curing time of carbon fiber/epoxy resin composite material.The properties of carbon fiber/epoxy resin composite material under microwave curing were investigated by thermog...Microwave irradiation was used to reduce the curing time of carbon fiber/epoxy resin composite material.The properties of carbon fiber/epoxy resin composite material under microwave curing were investigated by thermogravimetry(TG),dynamic mechanical analysis(DMA),impact strength test and scanning electron microscope(SEM).The results show that composite materials patch have high thermal stability after microwave curing.The initial degradation temperature is 330.9℃,the maximum thermal decomposition rate is at 368.1℃.When the layer of composite materials patchis 4 layers,the dynamic mechanical properties are the best after microwave curing.The initial storage modulus is 43.2 GPa,increased 28.3 GPa and 27.1 GPa than 3 layers and 5 layers,the glass transition temperature(Tg)is 67.48℃,increased about 12 ℃than 3 layers and 5 layers.Microwave curing can significantly improve the infiltration capacity of epoxy resin,enhance interfacial bonding,and increase the impact strength of composite patch.Under microwave curing,the impact strength of 3,4,5-layers composite material patches increases 35.9%,6.4% and 15.1%,respectively than heating curing.The SEM analysis of impact fracture surface shows that microwave curing can improve the interface of carbon fiber and epoxy resin.展开更多
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr...Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.展开更多
With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also req...With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also requires that the sports experts should not only strive for the scientific training, but should also pay much attention on the improvement and development of the sports equipment at the same time, which makes the sports equipment market have achieved unprecedented prosperity. This paper introduces the application of the fiber reinforced composite materials in the field of sports equipment, which is described mainly from the advantages of the fiber reinforced composite materials used in sports equipment areas, and from the aspects of the principles of material selection, the product varieties, the application examples and the status.展开更多
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here,...This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.展开更多
Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedd...Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedded fiber must be small enough so that the fiber does not break before it is pulled freely. This is difficult to achieve by conventional methods with fibers of small diameter, such as the carbon fibers. In this paper, a fiber pull-out experiment is described. Specialized apparatus in our laboratory, as well as this technique for sample preparation are discussed in detail. The interfacial shear strength of carbon fiber/resin matrix composites is analyzed quantitatively by using the finite-element method. The SFPOT system has been proved to be an available means for the study of interfacial properties for carbon fiber/resin matrix composites.展开更多
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axi...Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.展开更多
The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An ...The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An electrolysis study to increase the surface acidic groups of the carbonfiber was investigated in this paper. Experimental results showed that the surface acidic groups,tensile strength, peeling strength of the carbon fabrics increased under certain electrolytic condi-tions, but the breaking elongations decreased. When the electrolytic conditions were too strong,tensile strength and peeling strength dropped down. Electronic scanning micrographs showed theengraved surfaces of carbon fibers after electrolysis.展开更多
文摘Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vigorous development of science,technology and social economy in China,the development of bridge projects has also been accelerated to a large extent.In recent years,China has not only studied on how to strengthen the performance of concrete,steel and other materials in bridge projects,but also the performance of the recently developed smart,nano-,fibrous and other types of materials.This paper focuses on the application strategy of carbon fiber composite materials in bridge reconstruction projects to serve as a reference.
基金Project(51375369)supported by the National Natural Science Foundation of ChinaProject(SYG201137)supported by the Science and Technology Development Program of Suzhou,China
文摘To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.
文摘A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.
基金This work was supported by NSFC(No.59908007)a foundation for phosphor plan from the Science and Technology Committee of Shanghai Municipality(No.01QE14052)The financial support from the Foundation for the University Key Studies of Shanghai was also gratefully acknowledged.
文摘The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.
基金Funded by the National Natural Science Foundation of China(No.50878170 and No. 10672128)
文摘The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.
基金Project supported by Harbin Aircraft Industry Co.,Ltd.,China。
文摘The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found.
基金This work was financially supported by Scientific Research Fund of Yunnan Institute of Engineering(2019gchy01).
文摘An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and compression performance tests.It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber.The used material succeeds in producing significant vibrations damping(vibration attenuation effect is superior to that obtained with conventional alloy materials).
文摘In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.
基金Project(51675538)supported by the National Natural Science Foundation of China。
文摘Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.
基金Jiangsu Province for the Transformation of Scientific and Technological Achievements(BA2019043)Jiangsu Provincial Key Research and Development Program(BE2021014-2)。
文摘The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionalization treatment is particularly important to unleash the full potential of the superior mechanical properties of dry-jet wet spun CFs.In this study,the effects of electrochemical oxidation treatment time and current density on the surface structures and the mechanical properties of dry-jet wet spun CFs were investigated.The interlaminar shear strength of the CFs improves significantly from 69 to 84 MPa after 120 s of treatment.Further structural analysis reveals that the improvements are due to the addition of oxygen-containing functional groups and the optimization of the morphology on the surface of the CFs.
基金the National Natural Science Foundation of China(Grant Nos.51621091,51872058,51772060,and 51972078)and Key Laboratory of Advanced Structural-Functional Integration Materials&Green Manufacturing Technology,Harbin Institute of Technology,China!。
文摘Carbon fibers reinforced lithium aluminosilicate matrix composites(Cf/LAS)were prepared by slurry infiltration combined with a hot press procedure.The friction,wear behavior,and wear mechanisms of Cf/LAS composites under dry sliding conditions were investigated.The results show that the coefficient of friction(COF)initially increased with the increase in carbon fiber content,and reached the maximum value of 0.20 for the 33%Cf/LAS composite.The COF increased sharply with increasing sample temperature from RT to 300℃.The COF remained stable in the temperature range of 300–500℃.The two wear mechanisms of LAS glass-ceramics are fatigue wear and abrasive wear.The Cf/LAS composites demonstrate slight spalling and shallow scratches.These results show that carbon fibers improve the mechanical properties and wear resistance of Cf/LAS composites.
基金National Key Laboratory Foundation for Remanufacting(9140C85040209OC8510)
文摘Microwave irradiation was used to reduce the curing time of carbon fiber/epoxy resin composite material.The properties of carbon fiber/epoxy resin composite material under microwave curing were investigated by thermogravimetry(TG),dynamic mechanical analysis(DMA),impact strength test and scanning electron microscope(SEM).The results show that composite materials patch have high thermal stability after microwave curing.The initial degradation temperature is 330.9℃,the maximum thermal decomposition rate is at 368.1℃.When the layer of composite materials patchis 4 layers,the dynamic mechanical properties are the best after microwave curing.The initial storage modulus is 43.2 GPa,increased 28.3 GPa and 27.1 GPa than 3 layers and 5 layers,the glass transition temperature(Tg)is 67.48℃,increased about 12 ℃than 3 layers and 5 layers.Microwave curing can significantly improve the infiltration capacity of epoxy resin,enhance interfacial bonding,and increase the impact strength of composite patch.Under microwave curing,the impact strength of 3,4,5-layers composite material patches increases 35.9%,6.4% and 15.1%,respectively than heating curing.The SEM analysis of impact fracture surface shows that microwave curing can improve the interface of carbon fiber and epoxy resin.
文摘Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.
文摘With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also requires that the sports experts should not only strive for the scientific training, but should also pay much attention on the improvement and development of the sports equipment at the same time, which makes the sports equipment market have achieved unprecedented prosperity. This paper introduces the application of the fiber reinforced composite materials in the field of sports equipment, which is described mainly from the advantages of the fiber reinforced composite materials used in sports equipment areas, and from the aspects of the principles of material selection, the product varieties, the application examples and the status.
基金Project supported by the Foundation for Science and Technology Development of National University of Civil Engineering-Ha Noi-Vietnam (No. 27-2020/KHXD-TD)。
文摘This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.
基金the High Technology Research and Development Programme of China.
文摘Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedded fiber must be small enough so that the fiber does not break before it is pulled freely. This is difficult to achieve by conventional methods with fibers of small diameter, such as the carbon fibers. In this paper, a fiber pull-out experiment is described. Specialized apparatus in our laboratory, as well as this technique for sample preparation are discussed in detail. The interfacial shear strength of carbon fiber/resin matrix composites is analyzed quantitatively by using the finite-element method. The SFPOT system has been proved to be an available means for the study of interfacial properties for carbon fiber/resin matrix composites.
基金Supported by Arm Equipment Exploration Project(No.6130516).
文摘Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.
基金This paper was presented to Sino-Japan Symposium on Dyeing Finishing on October 7, 1990 at China Textile University
文摘The composites obtained from carbon fibers have poor interlaminar shear strength beacuse ofthe few active polar groups on the carbon fiber surface and the weak bonding between the carbonfiber and the resin matrix. An electrolysis study to increase the surface acidic groups of the carbonfiber was investigated in this paper. Experimental results showed that the surface acidic groups,tensile strength, peeling strength of the carbon fabrics increased under certain electrolytic condi-tions, but the breaking elongations decreased. When the electrolytic conditions were too strong,tensile strength and peeling strength dropped down. Electronic scanning micrographs showed theengraved surfaces of carbon fibers after electrolysis.