期刊文献+
共找到4,840篇文章
< 1 2 242 >
每页显示 20 50 100
Effect of Water Absorption on the Impact Properties of Carbon Fiber/Epoxy Composites
1
作者 LU Xiao-jun ZHANG Qi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期14-18,共5页
In this paper, the effects of test temperatures and time on the impact damage behavior of unidirectional carbon fiber reinforced epoxy resin composites, immersed in pure water, on a pendulum impact tester, was studied... In this paper, the effects of test temperatures and time on the impact damage behavior of unidirectional carbon fiber reinforced epoxy resin composites, immersed in pure water, on a pendulum impact tester, was studied. The results show that immersion in liquids has a significant effect on the impact resistance of the unidirectional composite material. It is obvious that after immersion, the mass of the material increases. The fracture initiation forces as well as the fracture initiation energy decrease as the immersion time lengthens. Moreover, the higher the temperature and the longer the time are, the more the crack propagation energy and the ductility index will be. Immersion makes the fracture mode change from the dominant fiber fracture into dominant delamination. All in all, immersion decreases the impact resistance of the composites and causes the fracture mode to change. 展开更多
关键词 carbon fiber composites impact damage IMMERSION fracture mechanisms
下载PDF
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
2
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 Glass/carbon fiber Hybrid composites Multiwall carbon Nanotubes (MWCNTs) Halloysite Nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
3
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Preparation and 3D printing of high-thermal-conductivity continuous mesophase-pitch-based carbon fiber/epoxy composites 被引量:2
4
作者 Haiguang ZHANG Kunlong ZHAO +1 位作者 Qingxi HU Jinhe WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第2期162-172,共11页
To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pit... To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pitch-based carbon fiber/thermoplastic polyurethane/epoxy(CMPCF/TPU/epoxy)composite filament and its preparation process in this study.The composite filament is based on the high thermal conductivity of CMPCF,the high elasticity of TPU,and the high-temperature resistance of epoxy.The tensile strength and thermal conductivity of the CMPCF/TPU/epoxy composite filament were tested.The CMPCF/TPU/epoxy composites are formed by 3D printing technology,and the composite filament is laid according to the direction of heat conduction so that the printed part can meet the needs of directional heat conduction.The experimental results show that the thermal conductivity of the printed sample is 40.549 W/(m·K),which is 160 times that of pure epoxy resin(0.254 W/(m·K)).It is also approximately 13 times better than that of polyacrylonitrile carbon fiber/epoxy(PAN-CF/epoxy)composites.This study breaks through the technical bottleneck of poor printability of CMPCF.It provides a new method for achieving directional thermal conductivity printing,which is important for the development of complex high-performance thermal conductivity products. 展开更多
关键词 Thermal conductivity 3D printing Continuous mesophase-pitch-based carbon fiber(CMPCF) Thermoplastic polyurethane(TPU) epoxy composite filament
原文传递
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
5
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
6
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 Polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites
7
作者 Chunhua Liu Dongfang Zou +3 位作者 Qinqin Huang Shang Li Xia Zheng Xingong Li 《Journal of Renewable Materials》 EI 2023年第10期3613-3624,共12页
The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER tran... The residual resources of ramie fiber-based textile products were used as raw materials.Ramie fiber felt(RF)was modified by NaClO_(2) aqueous solution and then impregnated with water-based epoxy resin(WER).RF/WER transparent composite materials were prepared by lamination hot pressing process.The composite materials’color difference,transmittance,haze,density,water absorption,and mechanical properties were determined to assess the effects of NaClO_(2) treatment and the number of ramie fiber layers on the properties of the prepared composites.The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO_(2) treatment.With the increase of ramie fiber layers,the composites’whiteness,transmittance,and water absorption decreased while the haze increased.For material with three layers,the optical transmittance in the visible light region was 82%,and the haze was 96%,indicating the material has both high transmittance and high haze characteristics.The tensile strength increases with the increase of the number of layers,and the tensile strength of the composite with six layers is 243 MPa.This study broadens the scope of application of ramie fiber as a new option for home decoration materials. 展开更多
关键词 Ramie fiber water-based epoxy transparent composites TRANSMITTANCE HAZE tensile strength
下载PDF
EXPERIMENTAL STUDY ON PEK -C MODIFIED EPOXIES AND THE CARBON FIBER COMPOSITES FOR AEROSPACE APPLICATION 被引量:7
8
作者 李暘暘 益小苏 唐邦明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期242-249,共8页
The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took pl... The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested. 展开更多
关键词 PEK-C thermoset/thermoplastic binary system phase behavior interface TOUGHNESS carbon fiber composites
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
9
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK‑C Hybrid Nanofiber Veils 被引量:5
10
作者 Jinli Zhou Chenyu Zhang +5 位作者 Chao Cheng Ming Wang Zhihui Yang Yanfei Yang Hongying Yang Muhuo Yu 《Advanced Fiber Materials》 SCIE EI 2022年第5期1081-1093,共13页
In this study,two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body.The cast was then manufactured into hybrid nanofiber as interleaves for inte... In this study,two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body.The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin(CF/EP)composites using a co-solvent method.The results revealed that when the hybrid components reached 15 wt%,Polyethersulfone(PES)and polyaryletherketone cardo(PEK-C)exhibited the best synergistic toughening effect,and the fracture toughness increased by 99.8%and 39.8%,respectively,compared with the reference or the same proportion of the single PES toughened sample.We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter(gsm)as composite toughening layers.Apart from the lack of significant influence of PES nanofiber on CF/EP composites,the interlaminar fracture toughness of mode I and mode II layers increased by 88.3%and 46.9%,respectively,compared to the reference sample.Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance:PEK-C consumes more energy due to the debonding and extraction of microspheres and resin,whereas the presence of the PES phase can induce more plastic deformation and crack deflection. 展开更多
关键词 carbon fiber/epoxy resin POLYETHERSULFONE Polyaryletherketone cardo Interlaminar fracture toughness NANOfiber
原文传递
Improvement of the Compressive Strength of Carbon Fiber/Epoxy Composites via Microwave Curing 被引量:7
11
作者 Xuehong Xu Xiaoqun Wang +3 位作者 Qun Cai Xu Wang Ran Wei Shanyi Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期226-232,共7页
Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were... Microwave processing was used to cure the carbon fiber/epoxy composites and designed for improving the compressive strength of the materials. By controlling the power of microwave heating, vacuum bagged laminates were fabricated under one atmosphere pressure without arcing. The physical and mechanical properties of composites produced through vacuum bagging using microwave and thermal curing were compared and the multistep (2-step or 3-step) microwave curing process for improved compressive properties was established. The results indicated that microwave cured samples had somewhat differentiated molecular structure and showed slightly higher glass transition temperature. The 2-step process was found to be more conducive to the enhancement of the compressive strength than the 3-step process. A 39% cure cycle time reduction and a 22% compressive strength increment were achieved for the composites manufactured with microwave radiation. The improvement in specific compressive strength was attributed to better interracial bonding between resin matrix and the fibers, which was also demonstrated via scanning electron microscopy analysis. 展开更多
关键词 carbon fiber epoxy Microwave curing Compressive properties
原文传递
Interfacial Improvement of Carbon Fiber/Epoxy Composites by Incorporating Superior and Versatile Multiscale Gradient Modulus Intermediate Layer with Rigid-flexible Hierarchical Structure 被引量:2
12
作者 Pei-Feng Feng Guo-Jun Song +6 位作者 Wen-Jian Zhang Hao Zheng Bo-Wen Li Shao-Feng Zhou Ya-Qing Liu Guang-Shun Wu Li-Chun Ma 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第7期896-905,共10页
In order to enhance the interfacial adhesion of carbon fiber(CF)and polymer matrix,a multiscale gradient modulus intermediate layer with rigid-flexible(GO-PA)hierarchical structure was designed and fabricated between ... In order to enhance the interfacial adhesion of carbon fiber(CF)and polymer matrix,a multiscale gradient modulus intermediate layer with rigid-flexible(GO-PA)hierarchical structure was designed and fabricated between CFs and matrix by a facile and businesslike strategy.The polarity,roughness and wettability of CFs surface as well as the thickness of intermediate layer in composite have been significantly increased after rigid-flexible hierarchical structure was constructed.The IFSS,ILSS,compression and impact toughness manifested that the hierarchical structure could bring about a fantastic improvement(76.8%,46.4%,40.7%and 37.8%)for the interfacial and mechanical properties than other previous reports.Consequently,the establishment of CF surface with gradient modulus rigid-flexible hierarchical structure via regulation of nanoparticles and polymer array would open a new,viable and promising route to obtaining high-performance composites. 展开更多
关键词 carbon fibers Polymer-matrix composites INTERFACE Hierarchical structure Gradient modulus
原文传递
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites 被引量:1
13
作者 LI Yuanyuan JI Yu +5 位作者 GU Zhiqi LI Qiuya HE Hongzhe ZHANG Yan WANG Ping SUI Jianhua 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
下载PDF
Enhancing the Mechanical Strength for a Microwave Absorption Composite Based on Graphene Nanoplatelet/Epoxy with Carbon Fibers 被引量:1
14
作者 Maryam Jahan Richard Osuemeshi Inakpenu +1 位作者 Kuo Li Guanglin Zhao 《Open Journal of Composite Materials》 2019年第2期230-248,共19页
Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanic... Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications. 展开更多
关键词 Microwave Absorption Mechanical Strength GRAPHENE Nanoplatelet/epoxy/carbon fiber composite MULTIFUNCTIONAL composite
下载PDF
Kinetic Study of Resin-Curing on Carbon Fiber/Epoxy Resin Composites by Microwave Irradiation 被引量:1
15
作者 Daisuke Shimamoto Yusuke Imai, Yuji Hotta 《Open Journal of Composite Materials》 2014年第2期85-96,共12页
Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin... Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 μm or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120°C were similar to ones of the sample prepared by conventional oven for 180 min at 120°C. Microwavecured carbon fiber/epoxy resin composite had higher glass transition temperature than the one prepared by conventional oven. The relation between curing time and flexural modulus indicated that the curing velocity of microwave-irradiated carbon fiber/epoxy resin composite was 9 times faster than the one prepared by conventional oven. Furthermore, activation energies for resincuring reaction on microwave and conventional-cured carbon fiber/epoxy resin composite were estimated. The resin-curing reaction in carbon fiber/epoxy resin composite was promoted by microwave irradiation. 展开更多
关键词 Activation Energy Resin-Curing Microwave IRRADIATION epoxy RESIN carbon fiber
下载PDF
Investigation on forward and backward transfer process during carbon fiber/epoxy composites dry-sliding against iron alloy
16
作者 LU LongSheng LI ZeHong +2 位作者 FANG HeZhengZi XIE YingXi WANG WenTao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2564-2572,共9页
Carbon fiber reinforced polymer(CFRP)composites with high load-bearing capacity are currently ideal materials in tribological load systems.One of the unique features during the friction process of CFRP/metal is the in... Carbon fiber reinforced polymer(CFRP)composites with high load-bearing capacity are currently ideal materials in tribological load systems.One of the unique features during the friction process of CFRP/metal is the in-situ formation of an ultrathin and uniform transfer film on the metal surface,and the related initial/transfer mechanism is very important but still unclear.Recent studies mainly focus on the one-way transfer process of CFRP to the metal surface,that is,forward transfer;whereas another easily overlooked issue is that the metal material also transfers backward to the CFRP surface.Herein,we firstly prepared carbon fiber/epoxy resin composites(CF/EP)by the hot-pressing method and then carried out friction tests with iron alloy as the control material.The underlying mechanism of the forward/backward transfer process is revealed by controlling the morphological evolution and iron content of the transfer film on worn CF/EP.According to the variation law of friction coefficient with time,the interfacial friction is divided into three different stages,among which the behaviours of“micro-convex contact”and“epoxy exfoliation”occur throughout the whole procedure.We believe this work could provide a meaningful reference for studying the friction behaviour and mechanism,especially the forward and backward transfer between composites/metals,and further broaden its emerging applications in future energy,aerospace and rail transportation. 展开更多
关键词 carbon fiber epoxy composite transfer film friction mechanism
原文传递
Experimental and simulation research on thermal stamping of carbon fiber composite sheet 被引量:4
17
作者 张琦 高强 蔡进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期217-223,共7页
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments... To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results. 展开更多
关键词 thermal stamping carbon fiber composite sheet shear angle BENDING deep drawing
下载PDF
Structural Design and Analysis of a Booster Arm Made of a Carbon Fiber Reinforced Epoxy Composite Material
18
作者 Songhua Hu Lixiong Sun Hongying Xiong 《Fluid Dynamics & Materials Processing》 EI 2022年第4期1083-1088,共6页
An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and co... An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and compression performance tests.It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber.The used material succeeds in producing significant vibrations damping(vibration attenuation effect is superior to that obtained with conventional alloy materials). 展开更多
关键词 Study on the performance of carbon fiber composite material power arm structure power arm
下载PDF
Development of Hybrids Composites of Carbon and Aramid Fibers to Reinforce Matrix of Epoxy Resins Part I
19
作者 Arnaldo Carlos Morelli Jose Antonio Garcia Croce +1 位作者 Célio Caminaga Letícia R.Timarco 《材料科学与工程(中英文B版)》 2018年第2期86-89,共4页
Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,wh... Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry. 展开更多
关键词 Hybrid compositeS fibers Kevlar/carbon physical and mechanics properties
下载PDF
Surface Characteristics of Rare Earth Treated Carbon Fibers and Interfacial Properties of Composites 被引量:3
20
作者 徐志伟 黄玉东 +2 位作者 宋元军 张春华 刘丽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期462-468,共7页
Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated car... Effect of rare earth treatment on surface physicochemical properties of carbon fibers and interfacial properties of carbon fiber/epoxy composites was investigated, and the interfacial adhesion mechanism of treated carbon fiber/epoxy composite was analyzed. It was found that rare earth treatment led to an increase of fiber surface roughness, improvement of oxygeaa-containing groups, and introduction of rare earth element on the carbon fiber surface. As a result, coordination linkages between fibers and rare earth, and between rare earth and resin matrix were formed separately, thereby the interlaminar shear strength (ILSS) of composites increased, which indicated the improvement of the interfacial adhesion between fibers and matrix resin resulting from the increase of carboxyl and carbonyl. 展开更多
关键词 carbon fiber/epoxy composite interfacial properties X-ray photoelectron spectroscopy rare earths
下载PDF
上一页 1 2 242 下一页 到第
使用帮助 返回顶部