期刊文献+
共找到878篇文章
< 1 2 44 >
每页显示 20 50 100
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
1
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Impact Responses of the Carbon Fiber Fabric Reinforced Composites 被引量:1
2
作者 姜春兰 李明 +1 位作者 张庆明 马晓青 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期225-230,共6页
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay... To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) composite IMPACT Lagrange analysis
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
3
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Porosity Effects on Interlaminar Fracture Behavior in Carbon Fiber-Reinforced Polymer Composites 被引量:2
4
作者 Issa A. Hakim Steven L. Donaldson +1 位作者 Norbert G. Meyendorf Charles E. Browning 《Materials Sciences and Applications》 2017年第2期170-187,共18页
Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient... Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning. 展开更多
关键词 carbon fiber reinforced composite NONDESTRUCTIVE Evaluation POROSITY Fatigue Fracture Behavior SERIAL Sectioning
下载PDF
Preparation of three-dimensional braided carbon fiber reinforced mullite composites from a sol with high solid content 被引量:1
5
作者 Wei ZHANG Qing-song MA +1 位作者 Ke-wei DAI Wei-guo MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2249-2255,共7页
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as... To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics andmullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300℃ and thegel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated throughthe route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa anda fracture toughness of 10.9 MPa·m1/2are obtained although the total porosity reaches 26.0%. Oxidation resistances of the compositesat 1200, 1400 and 1600 ℃ were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny massloss and their mechanical properties are well retained after oxidation at 1600 ℃ for 30 min. 展开更多
关键词 carbon fiber reinforced mullite composites Al2O3-SiO2 sol mechanical properties oxidation resistance
下载PDF
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites 被引量:1
6
作者 LI Yuanyuan JI Yu +5 位作者 GU Zhiqi LI Qiuya HE Hongzhe ZHANG Yan WANG Ping SUI Jianhua 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
下载PDF
Orthogonal design of experiment and analysis of abrasive water jet cutting on carbon fiber reinforced composites
7
作者 HE Binjie DAI Jinchun +3 位作者 ZHAO Deng HUANG Nuodi WU Shijing HAN Caihong 《排灌机械工程学报》 EI CSCD 北大核心 2020年第9期928-932,共5页
The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so ... The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so on.However,this composite has a strict requirement on processing techniques,for example,brittle damage or delamination often exists in conventional processing techniques.Abrasive water jet machining technology is a new type of green machining technique with distinct advantages such as high-energy and thermal distortion free.The use of abrasive water jet technique to process carbon fiber composite materials has become a popular trend since it can significantly improve the processing accuracy and surface quality of carbon fiber composite materials.However,there are too many parameters that affect the quality of an abrasive water jet machining.At present,few studies are carried out on the parameter optimization of such a machining process,which leads to the unstable quality of surface processing.In this paper,orthogonal design of experiment and regression analysis were employed to establish the empirical model between cutting surface roughness and machining process parameters.Then a verified model was used to optimize the machining process parameters for abrasive water jet cutting carbon fiber reinforced composites. 展开更多
关键词 abrasive water jet carbon fiber reinforced composites surface roughness orthogonal experiment regression analysis
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
8
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film 被引量:2
9
作者 闫久春 王晓林 +2 位作者 秦明 赵新英 杨士勤 《China Welding》 EI CAS 2004年第1期71-75,共5页
Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding tim... Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3 MPa to 0.5 MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested. 展开更多
关键词 resistance welding carbon fiber reinforced polyetheretherketone composite welding parameter FRACTURE
下载PDF
Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites 被引量:5
10
作者 ZHANG Xiuzhi SUN Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期172-176,共5页
In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced conc... In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy. 展开更多
关键词 steel fiber carbon fiber fiber-reinforced cementitious composites shielding effectiveness(SE) absorption properties
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
11
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) composite repair
下载PDF
Micro Model of Carbon Fiber/Cyanate Ester Composites and Analysis of Machining Damage Mechanism 被引量:3
12
作者 Haitao Liu Jie Lin +1 位作者 Yazhou Sun Jinyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期198-208,共11页
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d... Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately. 展开更多
关键词 carbon fiber reinforced polymer compositeS MICRO simulation model MACHINING damage mechanism MILLING and observation experiment Theoretical ANALYSIS
下载PDF
Fabrication of solid-phase-sintered Si C-based composites with short carbon fibers 被引量:1
13
作者 Xian-hui Li Qing-zhi Yan +2 位作者 Yong-jun Han Mei-qi Cao Chang-chun Ge 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1141-1145,共5页
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,... Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect. 展开更多
关键词 fiber-reinforced composites silicon carbide carbon fibers solid phase sintering microstructure
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
14
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th... This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites. 展开更多
关键词 carbon fiber reinforced polymers composites Ultrasonic vibration drilling
全文增补中
Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint:A review 被引量:1
15
作者 Junke JIAO Jihao XU +3 位作者 Chenghu JING Liyuan SHENG Haolei RU Hongbo XIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期13-31,共19页
Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical proper... Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical properties between CFRTP and metals,there are lots of challenges to connect them with high quality.Laser welding has a good application prospect in CFRTP and metals connection,and a significant research progress has been made in the exploration of CFRTP-metal laser joining mechanism,joining process optimization,joining strength improvement and joining defects controlling.However,there are still some problems need to be solved for this technology application.In this paper,the research progress of CFRTP-metal laser joining was summarized in three major aspects:theoretical modeling and simulation analysis,process exploration and parameter optimization,joint performance improvement and process innovation.And,problems and challenges of this technology were discussed,and the outlook of this research was provided. 展开更多
关键词 carbon fiber reinforced thermoplastic composite and metal hybrid joints Defects controlling Laser welding Numerical simulation
原文传递
Elevating mechanical and biotribological properties of carbon fiber composites by constructing graphene-silicon nitride nanowires interlocking interfacial enhancement
16
作者 Xinyi Wan Leilei Zhang +5 位作者 Bihan Zhang Qian Gao Tiantian Wang Haiyang Li Hongchao Sheng Hejun Li 《Journal of Materiomics》 SCIE CSCD 2024年第5期1080-1090,共11页
Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)hav... Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)have great potential application in the field of artificial hip joints,where a combination of high mechanical strength and excellent biotribological property are required.In this work,the graphene-silicon nitride nanowires(Graphene-Si_(3)N_(4)nws)interlocking interfacial enhancement were designed and constructed into CHM for boosting the mechanical and biotribological properties.The graphene and Si_(3)N_(4)nws interact with each other and construct interlocking interfacial enhancement.Benefiting from the Graphene-Si_(3)N_(4)nws synergistic effect and interlocking enhancement mechanism,the mechanical and biotribological properties of CHM were promoted.Compared with CHMP,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMP were increased by 80.0% and 61.5%,respectively.The friction coefficient and wear rate were reduced by 52.8% and 52.9%,respectively.Compared with CHMC,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMC were increased by 145.4% and 64.2%.The friction coefficient and wear rate were decreased by 52.3% and 73.6%.Our work provides a promising methodology for preparing Graphene-Si_(3)N_(4)nws reinforced CHM with more reliable mechanical and biotribological properties for use in artificial hip joints. 展开更多
关键词 carbon fiber composites Graphene-Si_(3)N_(4)nws reinforcement Interlocking enhancement Mechanical property Biotribological property
原文传递
Observation and Study of Fracture Behaviour for Fiber Reinforced Cement
17
作者 廖宪廷 王依民 杨序纲 《Journal of China Textile University(English Edition)》 EI CAS 1999年第3期109-111,共3页
Polypropylene, carbon, aramid and polyethylene fibers reinforced cement composites were fabricated respectively. Their fracture behaviors were observed using scanning electron microscopy and the bonding between fiber ... Polypropylene, carbon, aramid and polyethylene fibers reinforced cement composites were fabricated respectively. Their fracture behaviors were observed using scanning electron microscopy and the bonding between fiber and matrix was observed in detail. 展开更多
关键词 POLYPROPYLENE fiber (PP) carbon fiber ARAMID fiber POLYETHYLENE fiber (PE) fiber reinforced composite ( FRC) scanning electron MICROSCOPE ( SEM) fracture be-havior.
下载PDF
Self-Sensing Curved Micro-Strip Line Method for Damage Detection of CFRP Composites
18
作者 Akira Todoroki Kazuhiro Yamada +3 位作者 Yoshihiro Mizutani Yoshiro Suzuki Ryosuke Matsuzaki Hiroyasu Fujita 《Open Journal of Composite Materials》 2014年第3期131-139,共9页
A self-sensing Time Domain Reflectometry (TDR) method for Carbon Fibre Reinforced Polymer (CFRP) laminates has been propped in the present study: carbon fibres are used as sensors using a transmission line. Authors ha... A self-sensing Time Domain Reflectometry (TDR) method for Carbon Fibre Reinforced Polymer (CFRP) laminates has been propped in the present study: carbon fibres are used as sensors using a transmission line. Authors have published research articles of the self-sensing TDR method. The self-sensing TDR method reduces number of required electrodes for damage detections although the sensitivity of detection is sacrificed. A micro-strip line (MSL) method is adopted to obtain impedance matching with a coaxial cable and successfully detected damage in a CFRP laminate in the previous study. In the present study, a long curved MSL is experimentally investigated as an impedance-matched transmission line for detection of damage of a CFRP laminate in wider area. Fibre breakage is simulated as a hole made by drilling. As a CFRP laminate has strongly orthotropic electric conductance and the electric properties of a CFRP laminate at the high frequency are not clarified, the effect of the orthotropic conductance at the curved transmission line is experimentally investigated. As a result, the effect of orthotropic conductance at the curved strip line is shown to be negligible, and fiber breakage that locates closed to the copper strip line can be detected by the self-sensing curved MSL method. It is, however, difficult to detect damage far from the copper strip line. 展开更多
关键词 carbon FIBRE composite LAMINATES Electric Resistance fiber BREAKAGE Time Domain REFLECTOMETRY self-SENSING
下载PDF
Influence of Carbon Fiber Contents on the Temperature Sensibility of CFRC Road Material 被引量:3
19
作者 唐祖全 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期75-77,共3页
The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence gre... The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility. 展开更多
关键词 carbon fiber reinforced concrete temperature sensibility temperature self diagnosis
下载PDF
Mechanical properties and thermal stability of carbon fiber cloth reinforced sol-derived mullite composites 被引量:2
20
作者 Wei ZHANG Qingsong MA +2 位作者 Kuanhong ZENG Songlin LIANG Weiguo MAO 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第2期218-227,共10页
For the wide application as thermal protection materials,it is very necessary for mullite ceramics to improve fracture toughness.In this paper,the laminated and stitched carbon fiber cloth preform reinforced mullite(C... For the wide application as thermal protection materials,it is very necessary for mullite ceramics to improve fracture toughness.In this paper,the laminated and stitched carbon fiber cloth preform reinforced mullite(C/mullite)composites were prepared through the route of sol impregnation and heat treatment using the Al2O3-SiO2 sol with a high solid content as raw materials.The C/mullite composites showed a flexural strength of 228.9 MPa that was comparable to that of dense monolithic mullite although the total porosity reached 13.4%.Especially,a fracture toughness of 11.2 MPa·m1/2that was 4–5 times that of dense monolithic mullite was obtained.Strength deterioration due to the carbothermal reduction between carbon fiber and the residual SiO2 in matrix was found above 1200℃.A pyrolytic C(Py C)coating was deposited on carbon fibers as interfacial coating.The chemical damage to carbon fibers was obviously alleviated by the sacrifice of PyC coating.Accordingly,the C/PyC/mullite composites kept strength unchanged up to 1500℃,and showed much higher strength retention ratio than C/mullite composites after annealing at 1600℃. 展开更多
关键词 carbon fiber reinforced MULLITE composite SOL mechanical property thermal stability
原文传递
上一页 1 2 44 下一页 到第
使用帮助 返回顶部