We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence gre...The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.展开更多
The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites...The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites under different processing conditions were prepared through PIF-processing. SEM observations showed that the interfaces adhesion between CFs and PPS became stronger and ductile fracture mainly occurred in PPS matrix. This brought to a great increase of both strength and toughness by about 2 folds, when the composites were processed at 240 ℃ and under 263 MPa. The results in differential scanning calorimetry(DSC) and X-ray diffraction(XRD) measurements indicated more regular crystalline structures and orientation of lamellae formed during PIF-processing.展开更多
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i...Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.展开更多
Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has...Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.展开更多
Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundle...Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.展开更多
A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The resul...A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The results indicate that the conductivity of composites grows up slowly as the VGCF content is in the range of 10%-20%. It is very useful for industrial application to control the conductivity of composites by adjusting the VGCF content. In addition, at the range of - 50 - 120°C,the dependence of loss factor on the VGCF content varied with the temperature are tested and analyzed by dynamic mechanical and dielectric behavior measurement of the composites, and expected results are obtained.展开更多
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan...The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further devel...Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.展开更多
The relationship between the resistivity of Carbon Fiber-Cement Composite (CFCC) and the content of fiber has been discussed in this paper. The results show if the weight percentage of carbon fiber increases from 0.4%...The relationship between the resistivity of Carbon Fiber-Cement Composite (CFCC) and the content of fiber has been discussed in this paper. The results show if the weight percentage of carbon fiber increases from 0.4% to 1.2%, the resistivity of CFCC changes over the range (10M Omega . cm similar to 100 Omega . cm), and the percolation threshold is about 0.8w%. The conduction mechanism and percolation phenomenon of the composite can be explained by the tunneling model.展开更多
SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transform...In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.展开更多
Carbon fiber-reinforced thermoplastics (CFRP) have excellent specific strength and rigidity, which has made them a popular material for lightweight construction. The growing demand for fiber-reinforced plastics (FRP) ...Carbon fiber-reinforced thermoplastics (CFRP) have excellent specific strength and rigidity, which has made them a popular material for lightweight construction. The growing demand for fiber-reinforced plastics (FRP) leads to the problem of the sustainable handling of FRP at the end of their life cycle. The aim of the research project was to gain knowledge about the shredding of FRP concerning the optimal machine and process design of the shredding process and the possible formation of harmful, inhalable dust fractions and WHO fibers. Toxicity should be investigated at the cellular level. The investigated shredding parameters influence the amount and length of fiber dust produced, both when shredding with a cutting mill and when shredding with a single-shaft shredder. In all investigations, an increasing rotational speed leads to an increase in the fiber dust mass or the fiber concentration. The proportion of short, respirable fibers increases, but raising the speed does not lead to a further, significant shortening of the fibers. A reduction in feedstock size leads to a slightly reduced mass of fiber dust in the ground material. A reduction in the screen size also leads to an increase in fiber dust mass and concentration. There was no recognizable cytotoxicity in the relevant concentration range up to 500 μg/cm<sup>2</sup> and no significant induction of cell migration. This indicates minor flammable effects of the dust formed after inhalation. The biological data indicate that the WHO fibers produced by shredding are only a minor health hazard. Formally, the detected carbon fiber (CF) fragments meet the fiber definition of the legislator. However, carbon fibers currently have no specific limit value.展开更多
Carbon-fiber-reinforced cement-based (CFRC) composites is a promising functional material which can be used both in the military and civil fields against electromagnetic interference. However, it is essential to make ...Carbon-fiber-reinforced cement-based (CFRC) composites is a promising functional material which can be used both in the military and civil fields against electromagnetic interference. However, it is essential to make carbon fibers dispersed uniformly during the preparation of CFRC. In this work, short carbon fibers were treated through Chemical Vapor Deposition (CVD) process at high temperature between 900°C and 1200°C under the protection of diluted nitrogen gas N2 to modify the surface of carbon fibers to further strengthen the bonding between carbon fibers and cement matrix. Natural gas (98% CH4) was used as a precursor. It was decomposed to produce an uneven layer of pyrocarbon that was deposited on the surface of carbon fibers. CVD-treated carbon fibers were pre-dispersed by using ultrasonic wave. Both hydroxyethyl cellulose (HEC) and silicon fume were used as dispersants and as admixtures. They helped CVD-treated carbon fibers distribute uniformly. The mass fraction of HEC was around 1.78% in the aqueous solution. Four methods, namely, the simulation experiment (SE) method, the scanning electron microscopy (SEM) method, the fresh mixture (FM) method, and the electrical resistivity measurement (ERM) method were, respectively, applied to evaluate fiber dispersion degree. Each method indicated its own advantages and disadvantages and it therefore catered for different conditions. Of the four evaluation methods, the SE method was the most convenient way to determine the pre-dispersion state prior to the preparation of CFRC composites. This method was helpful for predicting the subsequent dispersion state of carbon fibers in the cement matrix because it economized a large quantity of raw materials and time.展开更多
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
文摘The relationship between the electrical resistivity of carbon fiber reinforced concrete(CFRC) containing different carbon fiber contents and temperature was studied.it is found that carbon fiber contents influence greatly on the temperature sensibility of CFRC road material.Only with a certain amount of carbon fiber can CFRC show a sensitive and stable temperature sensibility.
基金Funded by the National Natural Science Foundation of China(No.21404023)the Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(No.LK1417)the Fundamental Research Funds for the Central Universities(2232015D-10)
文摘The effect of pressure-induced flow(PIF) processing on the mechanical properties of noncontinuous carbon fiber(CF) reinforced polyphenylene sulfide(PPS) composites was investigated. A series of CF/PPS composites under different processing conditions were prepared through PIF-processing. SEM observations showed that the interfaces adhesion between CFs and PPS became stronger and ductile fracture mainly occurred in PPS matrix. This brought to a great increase of both strength and toughness by about 2 folds, when the composites were processed at 240 ℃ and under 263 MPa. The results in differential scanning calorimetry(DSC) and X-ray diffraction(XRD) measurements indicated more regular crystalline structures and orientation of lamellae formed during PIF-processing.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+2 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts.
文摘Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.
文摘Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.
文摘A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The results indicate that the conductivity of composites grows up slowly as the VGCF content is in the range of 10%-20%. It is very useful for industrial application to control the conductivity of composites by adjusting the VGCF content. In addition, at the range of - 50 - 120°C,the dependence of loss factor on the VGCF content varied with the temperature are tested and analyzed by dynamic mechanical and dielectric behavior measurement of the composites, and expected results are obtained.
基金supported by National Natural Science Foundation of China(51903113 and 52073133)China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金supported by the National Natural Science Foundation of China (Grant Nos.21573109,21206069)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.
文摘The relationship between the resistivity of Carbon Fiber-Cement Composite (CFCC) and the content of fiber has been discussed in this paper. The results show if the weight percentage of carbon fiber increases from 0.4% to 1.2%, the resistivity of CFCC changes over the range (10M Omega . cm similar to 100 Omega . cm), and the percolation threshold is about 0.8w%. The conduction mechanism and percolation phenomenon of the composite can be explained by the tunneling model.
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.
文摘In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.
文摘Carbon fiber-reinforced thermoplastics (CFRP) have excellent specific strength and rigidity, which has made them a popular material for lightweight construction. The growing demand for fiber-reinforced plastics (FRP) leads to the problem of the sustainable handling of FRP at the end of their life cycle. The aim of the research project was to gain knowledge about the shredding of FRP concerning the optimal machine and process design of the shredding process and the possible formation of harmful, inhalable dust fractions and WHO fibers. Toxicity should be investigated at the cellular level. The investigated shredding parameters influence the amount and length of fiber dust produced, both when shredding with a cutting mill and when shredding with a single-shaft shredder. In all investigations, an increasing rotational speed leads to an increase in the fiber dust mass or the fiber concentration. The proportion of short, respirable fibers increases, but raising the speed does not lead to a further, significant shortening of the fibers. A reduction in feedstock size leads to a slightly reduced mass of fiber dust in the ground material. A reduction in the screen size also leads to an increase in fiber dust mass and concentration. There was no recognizable cytotoxicity in the relevant concentration range up to 500 μg/cm<sup>2</sup> and no significant induction of cell migration. This indicates minor flammable effects of the dust formed after inhalation. The biological data indicate that the WHO fibers produced by shredding are only a minor health hazard. Formally, the detected carbon fiber (CF) fragments meet the fiber definition of the legislator. However, carbon fibers currently have no specific limit value.
文摘Carbon-fiber-reinforced cement-based (CFRC) composites is a promising functional material which can be used both in the military and civil fields against electromagnetic interference. However, it is essential to make carbon fibers dispersed uniformly during the preparation of CFRC. In this work, short carbon fibers were treated through Chemical Vapor Deposition (CVD) process at high temperature between 900°C and 1200°C under the protection of diluted nitrogen gas N2 to modify the surface of carbon fibers to further strengthen the bonding between carbon fibers and cement matrix. Natural gas (98% CH4) was used as a precursor. It was decomposed to produce an uneven layer of pyrocarbon that was deposited on the surface of carbon fibers. CVD-treated carbon fibers were pre-dispersed by using ultrasonic wave. Both hydroxyethyl cellulose (HEC) and silicon fume were used as dispersants and as admixtures. They helped CVD-treated carbon fibers distribute uniformly. The mass fraction of HEC was around 1.78% in the aqueous solution. Four methods, namely, the simulation experiment (SE) method, the scanning electron microscopy (SEM) method, the fresh mixture (FM) method, and the electrical resistivity measurement (ERM) method were, respectively, applied to evaluate fiber dispersion degree. Each method indicated its own advantages and disadvantages and it therefore catered for different conditions. Of the four evaluation methods, the SE method was the most convenient way to determine the pre-dispersion state prior to the preparation of CFRC composites. This method was helpful for predicting the subsequent dispersion state of carbon fibers in the cement matrix because it economized a large quantity of raw materials and time.