期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
1
作者 范影强 陈秀娟 XU Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期490-495,共6页
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv... The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved. 展开更多
关键词 ZNO carbon coating anode material lithium-ion batteries
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
2
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 CELLULOSE Hard carbon anode materials Rate performance Sodium-ion batteries
下载PDF
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes
3
作者 Na Zhu Yuxiang Yang +3 位作者 Yu Li Ying Bai Junfeng Rong Chuan Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期207-235,共29页
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr... Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed. 展开更多
关键词 carbon materials DENDRITES HOSTS interfacial layers Li metal anodes
下载PDF
Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook 被引量:11
4
作者 Qiongqiong Lu Yulin Jie +6 位作者 Xiangqi Meng Ahmad Omar Daria Mikhailova Ruiguo Cao Shuhong Jiao Yan Lu Yaolin Xu 《Carbon Energy》 SCIE CAS 2021年第6期957-975,共19页
Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including vi... Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications. 展开更多
关键词 carbon materials interface engineering Li deposition regulation Li metal anode structure stabilization
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:5
5
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries anode materials carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
Functional carbon materials for high-performance Zn metal anodes 被引量:3
6
作者 Caiwang Mao Yuxin Chang +7 位作者 Xuanting Zhao Xiaoyu Dong Yifei Geng Ning Zhang Lei Dai Xianwen Wu Ling Wang Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期135-153,I0005,共20页
The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-gr... The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined. 展开更多
关键词 Aqueous zinc-ion battery carbon material Zn anodes SUBSTRATE Coating ADDITIVE
下载PDF
Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials 被引量:1
7
作者 陆浩 汪君洋 +6 位作者 刘柏男 褚赓 周格 罗飞 郑杰允 禹习谦 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期438-445,共8页
Silicon monoxide(SiO) has been considered as one of the most promising anode materials for next generation highenergy-density Li-ion batteries(LiBs) thanks to its high theoretical capacity. However, the poor intrinsic... Silicon monoxide(SiO) has been considered as one of the most promising anode materials for next generation highenergy-density Li-ion batteries(LiBs) thanks to its high theoretical capacity. However, the poor intrinsic electronic conductivity and large volume change during lithium intercalation/de-intercalation restrict its practical applications. Fabrication of SiO/C composites is an effective way to overcome these problems. Herein, a series of micro-sized SiO@C/graphite(Si0@C/G) composite anode materials, with designed capacity of 600 mAh·g-1, are successfully prepared through a pitch pyrolysis reaction method. The electrochemical performance of SiO@C/G composite anodes with different carbon coating contents of 5 wt%, 10 wt%, 15 wt%, and 35 wt% is investigated. The results show that the SiO@C/G composite with15-wt% carbon coating content exhibits the best cycle performance, with a high capacity retention of 90.7% at 25℃ and90.1% at 45 0 C after 100 cycles in full cells with LiNi0.5Co0.2Mn0.3O2 as cathodes. The scanning electron microscope(SEM) and electrochemistry impedance spectroscopy(EIS) results suggest that a moderate carbon coating layer can promote the formation of stable SEI film, which is favorable for maintaining good interfacial conductivity and thus enhancing the cycling stability of SiO electrode. 展开更多
关键词 LITHIUM-ION BATTERY silicon MONOXIDE carbon coating anode material
下载PDF
Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries 被引量:2
8
作者 Jun Yang Jiahui Xian +2 位作者 Qinglin Liu Yamei Sun Guangqin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期524-530,I0015,共8页
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material... Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries. 展开更多
关键词 Bi nanoparticles carbon film anode materials Lithium-ion batteries In situ XRD
下载PDF
Effects of carbon sources on electrochemical performance of Li_4Ti_5O_(12)/C composite anode materials 被引量:1
9
作者 刘萍 张治安 +1 位作者 李劼 赖延清 《Journal of Central South University》 SCIE EI CAS 2010年第6期1207-1210,共4页
Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose,sucrose,and starch as carbon sources,respectively.The effects of carbon sources on the structure,morphology,and ele... Li4Ti5O12/C composite materials were synthesized by two-step solid state reaction method with glucose,sucrose,and starch as carbon sources,respectively.The effects of carbon sources on the structure,morphology,and electrochemical performance of Li4Ti5O12/C composite materials were investigated by SEM,XRD and electrochemical tests.The results indicate that carbon sources have almost no effect on the structure of Li4Ti5O12/C composite materials.The initial discharge capacities of the Li4Ti5O12/C composite materials are slightly lower than those of as-synthesized Li4Ti5O12.However,Li4Ti5O12/C composite materials show better electrochemical rate performance than the as-synthesized Li4Ti5O12.The capacity retention(79%) of the Li4Ti5O12/C composite materials with starch as carbon source,is higher than that of Li4Ti5O12/C composite materials with glucose and sucrose as carbon source at current rate of 2.0C. 展开更多
关键词 锂离子电池阳极材料 Li4Ti5O12 碳电气化学的性能
下载PDF
Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries 被引量:2
10
作者 Fuping Chen Yujie Di +6 位作者 Qiong Su Dongming Xu Yangpu Zhang Shuang Zhou Shuquan Liang Xinxin Cao Anqiang Pan 《Carbon Energy》 SCIE CSCD 2023年第2期12-23,共12页
Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of... Hard carbons are promising anode materials for sodium-ion batteries.To meet practical requirements,searching for durable and conductive carbon with a stable interface is of great importance.Here,we prepare a series of vanadiummodified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis.Significantly,the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds,thus optimizing the reaction kinetic.Meanwhile,the optimized hard carbon spheres modified by vanadium carbide,with sufficient pseudographitic domains,provide more active sites for Na ion migration and storage.As a result,the HC/VC-1300 electrode exhibits excellent Na storage performance,including a high capacity of 420 mAh g^(-1) at 50mA g^(-1) and good rate capability at 1 A g^(-1).This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization. 展开更多
关键词 anode materials hard carbon sodium-ion batteries stable interface vanadium carbide
下载PDF
The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries
11
作者 Jiahao Wang Jie Zhou +2 位作者 Zhengping Zhao Feng Chen Mingqiang Zhong 《Journal of Renewable Materials》 EI 2023年第8期3309-3332,共24页
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing... Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities. 展开更多
关键词 Batteries anode materials carbon nanofibers composites aerogel
下载PDF
Interconnected sandwich structure carbon/Si-SiO_2/carbon nanospheres composite as high performance anode material for lithium-ion batteries 被引量:3
12
作者 Yuanjin Du Mengyan Hou +3 位作者 Dan Zhou Yonggang Wang Congxiao Wang Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期315-323,共9页
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl... In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%. 展开更多
关键词 silicon carbon anode materials lithium-ion batteries template method carbon thermal vapor deposition
下载PDF
Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery 被引量:1
13
作者 申建斌 唐有根 +1 位作者 梁逸曾 谭欣欣 《Journal of Central South University of Technology》 EI 2008年第4期484-487,共4页
The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve... The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation. 展开更多
关键词 锂电池 碳阳极材料 结构设计 技术性能
下载PDF
Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries
14
作者 Fei-biao Chen Bo-rong Wu +3 位作者 Yun-kui Xiong Wei-lin Liao Dao-Bin Mu Feng Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期203-209,共7页
To prepare an anode material for Li-ion batteries with high discharge capacity and good cycling stability, disordered carbon (DC) formed by calcinations of 3,4,9,10-perylenetetracarboxylic dianhydride was modified v... To prepare an anode material for Li-ion batteries with high discharge capacity and good cycling stability, disordered carbon (DC) formed by calcinations of 3,4,9,10-perylenetetracarboxylic dianhydride was modified via an acid treatment using a mixture of HNO3 and H2SO4. The modified disordered carbon (MDC) was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brtmaner-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM). FTIR spectra confirm the successful introduction of carbonyl groups onto the DC surface. Some pores appear in the columnar structure of MDC, as observed in SEM micro- graphs. Li+ ions intercalation/deintercalation is facilitated by the modified morphology. Electrochemical tests show that the MDC exhibits a significant improvement in discharge capacity and cycling stability. These results indicate that the MDC has strong potential for use as an anode material in Li-ion batteries. 展开更多
关键词 carbon perylenetetracarboxylic dianhydride anode materials lithium-ion batteries
下载PDF
Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells 被引量:5
15
作者 Yang'en Xie Zhaokun Ma +2 位作者 Huaihe Song Zachary A.Stoll Pei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期81-86,共6页
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carb... Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Microbial fuel cells anode materials carbon felts MODIFICATION MELAMINE
下载PDF
Coral-Like Yolk–Shell-Structured Nickel Oxide/Carbon Composite Microspheres for High-Performance Li-Ion Storage Anodes 被引量:4
16
作者 Min Su Jo Subrata Ghosh +2 位作者 Sang Mun Jeong Yun Chan Kang Jung Sang Cho 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期46-63,共18页
In this study, coral?like yolk–shell?structured NiO/C composite microspheres(denoted as CYS?NiO/C) were prepared using spray pyrolysis. The unique yolk–shell structure was characterized, and the formation mechanism ... In this study, coral?like yolk–shell?structured NiO/C composite microspheres(denoted as CYS?NiO/C) were prepared using spray pyrolysis. The unique yolk–shell structure was characterized, and the formation mechanism of the structure was proposed. Both the phase separation of the polyvinylpyrrolidone and polystyrene(PS) colloidal solution and the decompo?sition of the size?controlled PS nanobeads in the droplet played crucial roles in the formation of the unique coral?like yolk–shell structure. The CYS?NiO/C microspheres delivered a reversible discharge capacity of 991 mAh g^(-1) after 500 cycles at the current density of 1.0 A g^(-1). The dis?charge capacity of the CYS?NiO/C microspheres after the 1000 th cycle at the current density of 2.0 A g^(-1) was 635 mAh g^(-1), and the capacity retention measured from the second cycle was 91%. The final discharge capacities of the CYS?NiO/C microspheres at the current densities of 0.5, 1.5, 3.0, 5.0, 7.0, and 10.0 A g^(-1) were 753, 648, 560, 490, 440, and 389 mAh g^(-1), respectively. The synergetic e ect of the coral?like yolk–shell structure with well?defined interconnected mesopores and highly conductive carbon resulted in the excellent Li+?ion storage properties of the CYS?NiO/C microspheres. 展开更多
关键词 Yolk-shell Nickel oxide carbon composite anode materials Spray pyrolysis Lithium-ion batteries
下载PDF
New insights into carbon-based and MXene anodes for Na and K-ion storage: A review 被引量:3
17
作者 Zhensheng Hong Hajar Maleki +5 位作者 Tim Ludwig Yichao Zhen Michael Wilhelm Damin Lee Kwang-Ho Kim Sanjay Mathur 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期660-691,I0016,共33页
Na-ion batteries and K-ion batteries are promising alternatives to vastly used lithium-ion batteries mainly due to the larger natural abundance of sodium and potassium resources. Carbon-based and MXene materials have ... Na-ion batteries and K-ion batteries are promising alternatives to vastly used lithium-ion batteries mainly due to the larger natural abundance of sodium and potassium resources. Carbon-based and MXene materials have received increasing attention due to their unique layered structure to accommodate the larger sodium and potassium ions. It’s proposed that ionic size disparity (K^(+): 1.38 Å;Na^(+): 0.97 Å;Li^(+): 0.76 Å) leads to sluggish intercalation and extraction kinetics in larger alkali metal ions (AMIs). Nevertheless, the electrochemical inactivity of sodium intercalation in graphite suggests that different chemical properties of AMs and their interactions with carbon host and electrolytes is crucial for interfacial instability and irreversible capacity loss. Structural modifications by expanding interlayer spacing and defect engineering enable reduced diffusion barriers and enhanced insertion of sodium or potassium, but it blurs the electrochemical performance between battery and capacitor. This review provides insight into 2D carbon materials and their architectures for Na and K-ion batteries through an in-depth analysis of structure–property interdependence and different electrochemical mechanisms supported by both experimental and theoretical data to discuss the promises and challenges of post-lithium batteries. Finally, the perspectives and potential directions regarding material design concepts for 2D carbon-based nanomaterials and MXene phases for metal-ion storage are proposed. 展开更多
关键词 Na-ion batteries K-ion batteries anode carbon materials Structure design
下载PDF
High sulfur-doped hard carbon anode from polystyrene with enhanced capacity and stability for potassium-ion storage 被引量:3
18
作者 Xiaoyan Chen Xin-Bing Cheng Zhigang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期688-698,共11页
Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity a... Carbonaceous materials are regarded as a promising anode material for potassium ion batteries(PIBs)due to their high electronic conductivity, abundant resources and low cost. However, relatively low storage capacity and structural instability still hinder their practical application. Herein, high sulfur-doped hard carbon(SHC-3) with a sulfur up to 27.05 at% is synthesized from polystyrene and sulfur as precursors. As an anode for PIBs, the SHC-3 delivers a superb cycling stability and rate performance(298.1 mAh g^(-1)at 100 mA g^(-1) for 1000 cycles, a capacity retention of 95.2%;220.2 mAh g^(-1)at 500 mA g^(-1) after 5200 cycles). The potassium storage of SHC-3 exhibits excellent cyclic stability at both low and high rates.Structure and kinetic studies demonstrate that the larger interlayer spacing(0.382 nm) of the SHC-3 accelerates the diffusion of potassium ions and effectively alleviates the volume expansion, and thus maintains the structure stability during the process of potassization/de-potassization. Meanwhile, the density functional theory calculation shows that the doped sulfur atoms provide abundant active sites for the adsorption of potassium ions, thereby increasing the reversible capacity of PIBs. This work provides a new scheme for the design of carbonaceous anode materials with high capacity and long cycle life. 展开更多
关键词 Hard carbon materials Sulfur doping anode Potassium-ion storage DFT calculation
下载PDF
Micrometer-sized ferrosilicon composites wrapped with multi-layered carbon nanosheets as industrialized anodes for high energy lithium-ion batteries 被引量:2
19
作者 Meng Li Jingyi Qiu +6 位作者 Songtong Zhang Pengcheng Zhao Zhaoqing Jin Anbang Wang Yue Wang Yusheng Yang Hai Ming 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期286-295,共10页
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia... Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries. 展开更多
关键词 FERROSILICON Multi-layered carbon nanosheets Micrometer-sized Si material structural design anode Lithium-ion batteries
下载PDF
The application of carbon materials in nonaqueous Na‐O2 batteries 被引量:8
20
作者 Xiaoting Lin Qian Sun +2 位作者 Kieran Doyle Davis Ruying Li Xueliang Sun 《Carbon Energy》 CAS 2019年第2期141-164,共24页
Na‐O2 batteries are advantageous as the candidates of next‐generation electric vehicles due to their ultrahigh theoretical energy density and have attracted enormous attention recently.Tremendous efforts have been d... Na‐O2 batteries are advantageous as the candidates of next‐generation electric vehicles due to their ultrahigh theoretical energy density and have attracted enormous attention recently.Tremendous efforts have been devoted to improve the Na‐O2 battery performance by designing advanced electrodes with various carbonbased materials.Carbon materials used in Na‐O2 batteries not only function as the air electrode to provide active sites and accommodate discharge products but also as Na anode protectors against dendrite growth and chemical/electrochemical corrosion.In this review,we mainly focus on the application of various carbonbased materials in Na‐O2 batteries and highlight their advances.The scientific understanding on the fundamental design of the material microstructure and chemistry in relation to the battery performance are summarized.Finally,perspectives on enhancing the overall battery performance based on the optimization and rational design of carbon‐based cell components are also briefly anticipated. 展开更多
关键词 air electrode carbon materials nonaqueous Na‐O2 batteries sodium anode
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部