A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity ...A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity impact damage induced pits and longitudinal cracks on the front side,oblique cracks and delaminationin on the back side.The pit depth increased with the increasing impact energy.It was demonstrated that the numerical analysis strain history curve was similar to the experimentally measured strain history curve,which verified the accuracy of numerical analysis in which the Hashin failure criterion was used.The work provides basic data and theoretical basis for the promotion and application of the domestic carbon fiber,and demonstrates the feasibility of replacing imported carbon fibers with domestic carbon fibers.展开更多
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay...To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.展开更多
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil...The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2.展开更多
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,...Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.展开更多
In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced conc...In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.展开更多
A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanis...A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. Therefore, an experimental way was performed in order to make shear wave on the bottom of aluminum alloyed pyramid. Also, a jig was manufactured and developed for generating a shear wave based on the computer numerical simulation. It is found that the experimentally shear wave variation of newly-designed jig is consistent with computer numerical simulation results and shear wave ultrasonic application can be very useful to detect the defects in CFRP composites.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
Sizing treatment has shown great potential in improving the interfacial properties of poly(p-phenylene benzodioxazole)(PBO)fiber-reinforced composites,but is severely limited due to the use of flammable and explosive ...Sizing treatment has shown great potential in improving the interfacial properties of poly(p-phenylene benzodioxazole)(PBO)fiber-reinforced composites,but is severely limited due to the use of flammable and explosive organic solvents.Herein,a new high-efficiency waterborne sizing agent has been developed by using functionalized carbon nanospheres(CNSs)as a nano-reinforcement.Due to abundant oxygen-containing groups,the CNSs greatly improves the surface activity,wettability,and roughness of the PBO fibers.As a result,the interfacial shear strength of the CNSs sized fiber-reinforced composite increases by 79.6%compared with that of the pristine fiber-reinforced composite.Moreover,the excellent mechanical and thermal properties of the PBO fibers remain almost unchanged after sizing treatment.Thus,this work provides an environmentally friendly and scalable method for constructing a strong interface between the PBO fibers and the matrix resins,which makes sense in promoting the application of PBO fiber-reinforced composites in aerospace and military industries.展开更多
为研究超千米级碳纤维增强塑料(CFRP)与钢组合拉索斜拉桥动力性能,参考苏通大桥设计参数,选择优化的组合拉索面积比,分别建立1 400 m CFRP与钢组合拉索斜拉桥有限元模型以及全钢、全CFRP拉索斜拉桥2个对比模型.首先,对组合拉索斜拉桥以...为研究超千米级碳纤维增强塑料(CFRP)与钢组合拉索斜拉桥动力性能,参考苏通大桥设计参数,选择优化的组合拉索面积比,分别建立1 400 m CFRP与钢组合拉索斜拉桥有限元模型以及全钢、全CFRP拉索斜拉桥2个对比模型.首先,对组合拉索斜拉桥以及对比模型的固有频率和振型进行计算.然后,选择典型地震波进行地震动响应时程分析,并分别研究一维激励和三维激励2种输入形式.最后,采用规范法,从颤振稳定性、静力扭转稳定性以及抖振振幅估计3个方面对抗风稳定性进行分析.结果表明:采用合理优化面积比0.35,可使CFRP与钢组合拉索斜拉桥的抗震性能不仅优于传统钢拉索设计以及价格昂贵的全CFRP拉索设计,而且其主要构件内力数值也较低;对于抗风稳定性,组合拉索斜拉桥略低于全钢拉索设计,但明显优于全CRFP拉索设计,可在减轻拉索自重的同时提高其经济性能.展开更多
基金Funded by the Fundamental Research Funds for the Central Universities(No.2018IB001)and the National High-tech Research and Development Program of China(863 Program)(No.2013AA031306)。
文摘A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity impact damage induced pits and longitudinal cracks on the front side,oblique cracks and delaminationin on the back side.The pit depth increased with the increasing impact energy.It was demonstrated that the numerical analysis strain history curve was similar to the experimentally measured strain history curve,which verified the accuracy of numerical analysis in which the Hashin failure criterion was used.The work provides basic data and theoretical basis for the promotion and application of the domestic carbon fiber,and demonstrates the feasibility of replacing imported carbon fibers with domestic carbon fibers.
文摘To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.
基金National Natural Science Foundation of China(No.11802192)Natural Science Foundation of Jiangsu Province,China(No.BK20180244)Nantong Science and Technology Project,China(No.JC2019012)。
文摘The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110006110025)the National Natural Science Foundation of China(No.U1134102)
文摘Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.
基金Chinese Government for Scientific Researches (No. A1420060186)Doctoral Fundation of University of Jinan(No. XBS1026)
文摘In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.
文摘A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. Therefore, an experimental way was performed in order to make shear wave on the bottom of aluminum alloyed pyramid. Also, a jig was manufactured and developed for generating a shear wave based on the computer numerical simulation. It is found that the experimentally shear wave variation of newly-designed jig is consistent with computer numerical simulation results and shear wave ultrasonic application can be very useful to detect the defects in CFRP composites.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
基金financially supported by the National Natural Science Foundation of China (No. 51903237)Beijing Natural Science Foundation (No. 2222091)
文摘Sizing treatment has shown great potential in improving the interfacial properties of poly(p-phenylene benzodioxazole)(PBO)fiber-reinforced composites,but is severely limited due to the use of flammable and explosive organic solvents.Herein,a new high-efficiency waterborne sizing agent has been developed by using functionalized carbon nanospheres(CNSs)as a nano-reinforcement.Due to abundant oxygen-containing groups,the CNSs greatly improves the surface activity,wettability,and roughness of the PBO fibers.As a result,the interfacial shear strength of the CNSs sized fiber-reinforced composite increases by 79.6%compared with that of the pristine fiber-reinforced composite.Moreover,the excellent mechanical and thermal properties of the PBO fibers remain almost unchanged after sizing treatment.Thus,this work provides an environmentally friendly and scalable method for constructing a strong interface between the PBO fibers and the matrix resins,which makes sense in promoting the application of PBO fiber-reinforced composites in aerospace and military industries.
文摘为研究超千米级碳纤维增强塑料(CFRP)与钢组合拉索斜拉桥动力性能,参考苏通大桥设计参数,选择优化的组合拉索面积比,分别建立1 400 m CFRP与钢组合拉索斜拉桥有限元模型以及全钢、全CFRP拉索斜拉桥2个对比模型.首先,对组合拉索斜拉桥以及对比模型的固有频率和振型进行计算.然后,选择典型地震波进行地震动响应时程分析,并分别研究一维激励和三维激励2种输入形式.最后,采用规范法,从颤振稳定性、静力扭转稳定性以及抖振振幅估计3个方面对抗风稳定性进行分析.结果表明:采用合理优化面积比0.35,可使CFRP与钢组合拉索斜拉桥的抗震性能不仅优于传统钢拉索设计以及价格昂贵的全CFRP拉索设计,而且其主要构件内力数值也较低;对于抗风稳定性,组合拉索斜拉桥略低于全钢拉索设计,但明显优于全CRFP拉索设计,可在减轻拉索自重的同时提高其经济性能.