The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l...A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.展开更多
Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was ...Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.展开更多
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la...The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.展开更多
Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate...Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts.展开更多
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro...The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.展开更多
This paper provides guidance for the quantification and reporting of blue carbon removals in the temperate coastal ecosystems,“Italian valli da pesca”or H.C.W.(Human Controlled Wetland,Lat.45°Lon.12°),wher...This paper provides guidance for the quantification and reporting of blue carbon removals in the temperate coastal ecosystems,“Italian valli da pesca”or H.C.W.(Human Controlled Wetland,Lat.45°Lon.12°),where some pools as seagrasses,and salt marshes,are highly efficient at capturing and storing carbon dioxide(CO_(2))from the atmosphere.Halophyte salt marsh plants were found to have a%C on Dry Weight(D.W.)of 32.26±3.91(mean±standard deviation),macrophytes 33.65±7.99,seagrasses 29.23±2.23,tamarisk 48.42±2.80,while the first 5 centimetres of wetland mud,on average,had a%C of 8.56±0.94.Like the ISO(International Organization for Standardization)14064 guideline to quantify the GHG(Greenhouse Gas)emission,we have studied the different conversion factors to be used as a practical tool for measurement the CO_(2)sink activity.These factors are essential to calculate the overall carbon reduction in a project located in temperate wetland using a method as the ISO 14064.2,UNI-BNeutral,VCS VERRA or other that will come.展开更多
[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in...[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in Guizhou Province.[Method]By investigating the implement of Conversion of Farmland to Forest Project in Hongfenghu drainage basin from 2000 to 2006,the carbon sink amount and effect of seven main tree species in the foreat region like Cunninghamia lanceolata,Cryptomeria fortunei,Amygdalus persica,Prunus salicina,Armeniaca vulgaris,Camptotheca acuminate and Catalpa bungei were calculated,based on which the amount of forest carbon sinks in Hongfenghu drainage basin in 2015 was estimated.[Result]Biomass storage and carbon sink amount in middle and young aged forests were increasing over time from 2000 to 2006,which reached 1.05×107 kg by 2006 and would engage more and more potential.Cunninghamia lanceolata has the superior carbon sink capacity in the seven tree species in the research region,of which the amount of carbon sink per unit area will be 106.51 t/hm2 by 2015,followed by Cryptomeria fortunei with the amount of carbon sink per unit area by 99.42 t/hm2.Armeniaca vulgaris has the weakest carbon sink capacity of all the seven species with the amount of 13.03 t/hm2.The total amount of carbon sink in seven tree species was 2.35×107 kg,while the average amount of carbon sink per unit area was 26.17 t/hm2,which could produced economic benefit of 7.17×106 yuan calculated on the price of 305.0 yuan/t or 5.91×106 yuan calculated on the price of 254.1 yuan/t.[Conclusion]Economic benefits of carbon sink effects of Conversion of Farmland to Forest Project in Hongfenghu drainage basin were great with huge appreciation potential.展开更多
Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor ...Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor intrinsic conductivity,iron dissolution,and phase separation hinder the application of FeF_(2)in highenergy cathodes.Here,a pressure-induced morphology control method is designed to prepare coralloidlike FeF_(2)nanocrystals with nitrogen-rich carbon coating(c-FeF_(2)@NC).The coralloid-like interconnected crystal structure of c-FeF_(2)@NC contributes to reducing interfacial resistance and enhancing the topotactic transformation during the conversion reaction,and the nitrogen-rich carbon(NC)coating can enhance interfacial stability and kinetic performance.When used as a conversion cathode for LIBs,c-FeF_(2)@NC exhibits a high initial reversible capacity of 503.57 mA h g^(-1)and excellent cycling stability of497.61 m A h g^(-1)with a low capacity decay of 1.19%over 50 cycles at 0.1 A/g.Even at 1 A/g,a stable capacity of 263.78 mA h g^(-1)can still be retained after 200 cycles.The capability of c-FeF_(2)@NC as a conversion cathode for sodium-ion batteries(SIBs)was also evaluated to expand its field of application.Furthermore,two kinds of full batteries have been assembled by employing c-FeF_(2)@NC as cathodes and quantitative limited-Li(LLi)and pre-lithiated reduced graphene oxide(PGO)as anodes,respectively,to envisage the feasibility of practical applications of conversion materials.展开更多
This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t...This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.展开更多
Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundan...Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.展开更多
The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a signifi...The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.展开更多
Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO...Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.展开更多
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with...Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.展开更多
The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue ...The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue were characterized, under temperatures of 25, 30 and 41℃, respectively, and circulation of leachate generated within the lysimeters. It is found that 27% of organic carbon in the wastes are conversed into gases, 0.8% into leachate, and the other 72% remained in the decomposable solid residues, after 180 days' degradation at 41℃. Higher temperature will lead to more rapid degradation and result to higher conversion of the organic carbon to biogas and lower to both solid residues and leachate, while the pollutant concentrations in leachate will be lower at a higher temperature and the values of COD are quite consistent with TOC.展开更多
The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the...The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the combustion of natural gas is the crucial step.Fortunately,the lattice oxygen is used for chemical cycle conversion of methane to overcome the shortcomings mentioned above.A method was proposed to synthesize perovskite for methane cycle conversion using metal organic framework as a precursor.Morphology and pore structure of Fe_(2)O_(3)-LaFeO_(3)composite oxides were regulated by precursor synthesis conditions and calcination process.Moreover,the chemical looping conversion performance of methane was evaluated.The results showed that the pure phase precursor of La[Fe(CN)_(6)]·5H_(2)O was synthesized with the specific surface area of 23.91 m^(2)·g^(-1)under the crystallization of 10 h and the pH value of10.5.Fe_(2)O_(3)-LaFeO_(3)was obtained by controlled calcination of La[Fe(CN)_(6)]·5H_(2)O and Fe_(2)O_(3)with variable mass ratio.The selectivity of CO_(2)can reach more than 99%under the optimal parameters of methane chemical looping conversion:m(Fe_(2)O_(3)):m(LaFeO_(3))=2:1,the reaction temperature is 900℃,the lattice oxygen conversion is less than 40%.Fe_(2)O_(3)-LaFeO_(3)still has good phase and structure stability after five redox reaction and regeneration cycles.展开更多
Growing attention to the development of sustainable solar-to-energy conversion applications has resulted in the synthesis of promising and environment-friendly nanomaterials as energy harvesters.Among various carbon n...Growing attention to the development of sustainable solar-to-energy conversion applications has resulted in the synthesis of promising and environment-friendly nanomaterials as energy harvesters.Among various carbon nanomaterials,carbon dots(CDs)have received significant attention due to their excellent light absorption capability,broad absorption region,and superior photostability with enormous potential for solar energy applications.Therefore,utilizing and modulating the charge carriers generated from CDs is critical for achieving a high energy conversion efficiency of CDs.Herein,we focus on the distinct characteristics of CDs as energy converters from charge excitation to charge separation and transfer for various solar-to-energy applications,including photovoltaic cells,photocatalysts,and photoelectrocatalysts.We anticipate that this review will offer insight into the synthesis and design of novel nanocomposites with a fundamental analysis of the photochemical properties and future development of energy conversion devices.展开更多
With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions ...With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.展开更多
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金Natural Science Foundation of Hebei ProvinceTangshan Talent Funding Project,Grant/Award Number:E2022209039+1 种基金Key Research Project of North China University of Science and Technology,Grant/Award Number:ZD-YG 202301Tangshan Talent Punding Project,Grant/Award Number:A202202007
文摘A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.
基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110152,2022A1515240007,and 2023A1515010562)Special Fund for the Sci-tech Innovation Strategy of Guangdong Province(STKJ202209083,STKJ202209066,2020ST006,210719165864287)+4 种基金Characteristic Innovation Project of Colleges and Universities in Guangdong(2021KTSCX030)Scientific Research Foundation of Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center(QD2221007)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG01A)STU Scientific Research Initiation Grant(NTF20005,NTF22018)Science and technology program of Guangzhou(202102021110).
文摘Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2019MB019National Natural Science Foundation of China,Grant/Award Numbers:22075122,52071295Research Foundation for Talented Scholars of Linyi University,Grant/Award Number:Z6122010。
文摘The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.
基金financially supported by the National Natural Science Foundation of China(22072087)。
文摘Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts.
文摘The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51863005,51462006,51102230,51671062,51871065,and 51971068)the Guangxi Natural Science Foundation(No.2018GXNSFDA281051,2014GXNSFAA118401,and 2020GXNSFGA297004)+2 种基金the Science Research and Technology Development Program of Guangxi(AD17195073,AA19182014 and AA17202030-1)the Guangxi Bagui Scholar Foundation,the Guangxi Collabora-tive Innovation Centre of Structure and Property for New Energy and Materials,the Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands,Chinesisch-Deutsche Kooperationsgruppe(GZ1528)the Innovation Project of GUET Graduate Education(2019YCXS114 and 2018YJCX88).
文摘We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinforced carbonaerogel witha well-interconnected porous structure was constructed bycombining a flexible carbonresource from biomass guar gum with hard-brittle carbonfrom polyimide,to overcome severeshrinkage andpoor mechanical performance of traditionalcarbon aerogel.Thesupportingcarbon aerogel-encapsulated PEG produced thenovel composite PCMswithgood structure stability andcomprehensive energy storage performance.Theresults showed thatthecomposite PCMsdisplayed awell-defined 3Dinterconnected structure,and theirenergy storage capacities were 171.5 and169.5 J/g,which changed onlyslightlyafter 100 thermalcycles,andthe compositescould maintainthe equilibrium temperature at50.0−58.1℃ for about 760.3 s.The thermal conductivityofthe compositescould reach0.62 W m^(−1) K^(−1),which effectively enhanced the thermalresponse rate.And thecomposite PCMs exhibited good leakage-proof performance andexcellent light–thermal conversion.The compressive strengthof thecomposite PCMscan improveupto 1.602 MPa.Results indicatethatthisstrategy canbe efficiently usedtodevelop novel composite PCMswithimproved comprehensive thermalperformance and high light–thermal conversion.
文摘This paper provides guidance for the quantification and reporting of blue carbon removals in the temperate coastal ecosystems,“Italian valli da pesca”or H.C.W.(Human Controlled Wetland,Lat.45°Lon.12°),where some pools as seagrasses,and salt marshes,are highly efficient at capturing and storing carbon dioxide(CO_(2))from the atmosphere.Halophyte salt marsh plants were found to have a%C on Dry Weight(D.W.)of 32.26±3.91(mean±standard deviation),macrophytes 33.65±7.99,seagrasses 29.23±2.23,tamarisk 48.42±2.80,while the first 5 centimetres of wetland mud,on average,had a%C of 8.56±0.94.Like the ISO(International Organization for Standardization)14064 guideline to quantify the GHG(Greenhouse Gas)emission,we have studied the different conversion factors to be used as a practical tool for measurement the CO_(2)sink activity.These factors are essential to calculate the overall carbon reduction in a project located in temperate wetland using a method as the ISO 14064.2,UNI-BNeutral,VCS VERRA or other that will come.
基金Supported by The High-level Personnel Special Assistance Genome Project of Guizhou Province(TJZF(2009)25)Science and Technology Fund of Guizhou Province((2009)2251)The Key Projectof Chinese Ministry of Education.(210201)~~
文摘[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in Guizhou Province.[Method]By investigating the implement of Conversion of Farmland to Forest Project in Hongfenghu drainage basin from 2000 to 2006,the carbon sink amount and effect of seven main tree species in the foreat region like Cunninghamia lanceolata,Cryptomeria fortunei,Amygdalus persica,Prunus salicina,Armeniaca vulgaris,Camptotheca acuminate and Catalpa bungei were calculated,based on which the amount of forest carbon sinks in Hongfenghu drainage basin in 2015 was estimated.[Result]Biomass storage and carbon sink amount in middle and young aged forests were increasing over time from 2000 to 2006,which reached 1.05×107 kg by 2006 and would engage more and more potential.Cunninghamia lanceolata has the superior carbon sink capacity in the seven tree species in the research region,of which the amount of carbon sink per unit area will be 106.51 t/hm2 by 2015,followed by Cryptomeria fortunei with the amount of carbon sink per unit area by 99.42 t/hm2.Armeniaca vulgaris has the weakest carbon sink capacity of all the seven species with the amount of 13.03 t/hm2.The total amount of carbon sink in seven tree species was 2.35×107 kg,while the average amount of carbon sink per unit area was 26.17 t/hm2,which could produced economic benefit of 7.17×106 yuan calculated on the price of 305.0 yuan/t or 5.91×106 yuan calculated on the price of 254.1 yuan/t.[Conclusion]Economic benefits of carbon sink effects of Conversion of Farmland to Forest Project in Hongfenghu drainage basin were great with huge appreciation potential.
基金supported by Foundation for the Sichuan University and Zigong City Joint research project(2021CDZG-2)the Foundation for the Sichuan University and Yibin City Strategic Cooperation Project(2020CDYB-32)the Guangxi Key Laboratory of Low Carbon Energy Material(2020GKLLCEM02)。
文摘Fluoride ferrous(FeF_(2))is viewed as a promising conversion cathode material for next-generation lithiumion batteries(LIBs)due to its high theoretical specific capacity and low cost.Unfortunately,issues such as poor intrinsic conductivity,iron dissolution,and phase separation hinder the application of FeF_(2)in highenergy cathodes.Here,a pressure-induced morphology control method is designed to prepare coralloidlike FeF_(2)nanocrystals with nitrogen-rich carbon coating(c-FeF_(2)@NC).The coralloid-like interconnected crystal structure of c-FeF_(2)@NC contributes to reducing interfacial resistance and enhancing the topotactic transformation during the conversion reaction,and the nitrogen-rich carbon(NC)coating can enhance interfacial stability and kinetic performance.When used as a conversion cathode for LIBs,c-FeF_(2)@NC exhibits a high initial reversible capacity of 503.57 mA h g^(-1)and excellent cycling stability of497.61 m A h g^(-1)with a low capacity decay of 1.19%over 50 cycles at 0.1 A/g.Even at 1 A/g,a stable capacity of 263.78 mA h g^(-1)can still be retained after 200 cycles.The capability of c-FeF_(2)@NC as a conversion cathode for sodium-ion batteries(SIBs)was also evaluated to expand its field of application.Furthermore,two kinds of full batteries have been assembled by employing c-FeF_(2)@NC as cathodes and quantitative limited-Li(LLi)and pre-lithiated reduced graphene oxide(PGO)as anodes,respectively,to envisage the feasibility of practical applications of conversion materials.
基金funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.813393partially funded by the Portuguese FCT-Funda??o para a Ciência e a Tecnologia,under projects UIDB/50010/2020,UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021。
文摘This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
基金financially supported by the National Key Technology R&D Program of China(2017YFB0310704)the National Natural Science Foundation of China(21773112 and 21173119)the Fundamental Research Funds for the Central Universities
文摘Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.
文摘The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.
基金Project supported by the Ministry of Education Under the ATU Plan
文摘Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.
基金the National Natural Science Foundation of China(Nos.21774094,51702237,and 51973159)Science and Technology Commission of Shanghai Municipality(14DZ2261100)+1 种基金Shanghai Rising–Star Program(17QA1404300)the Youth Talent Support Program at Shanghai,the Fundamental Research Funds for the Central Universities(Tongji University).
文摘Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.
文摘The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue were characterized, under temperatures of 25, 30 and 41℃, respectively, and circulation of leachate generated within the lysimeters. It is found that 27% of organic carbon in the wastes are conversed into gases, 0.8% into leachate, and the other 72% remained in the decomposable solid residues, after 180 days' degradation at 41℃. Higher temperature will lead to more rapid degradation and result to higher conversion of the organic carbon to biogas and lower to both solid residues and leachate, while the pollutant concentrations in leachate will be lower at a higher temperature and the values of COD are quite consistent with TOC.
基金supported by the National Natural Science Foundation of China(21908021)the China Petroleum Science and Technology Innovation Fund project(2021DQ020701)+2 种基金the High-Level Talent Project of Heilongjiang Province of China(2020GSP17)the New Energy and New Direction Project of Northeast Petroleum University(XNYXLY202102)the Guiding Innovation Fund of Northeast Petroleum University(2021YDL03).
文摘The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the combustion of natural gas is the crucial step.Fortunately,the lattice oxygen is used for chemical cycle conversion of methane to overcome the shortcomings mentioned above.A method was proposed to synthesize perovskite for methane cycle conversion using metal organic framework as a precursor.Morphology and pore structure of Fe_(2)O_(3)-LaFeO_(3)composite oxides were regulated by precursor synthesis conditions and calcination process.Moreover,the chemical looping conversion performance of methane was evaluated.The results showed that the pure phase precursor of La[Fe(CN)_(6)]·5H_(2)O was synthesized with the specific surface area of 23.91 m^(2)·g^(-1)under the crystallization of 10 h and the pH value of10.5.Fe_(2)O_(3)-LaFeO_(3)was obtained by controlled calcination of La[Fe(CN)_(6)]·5H_(2)O and Fe_(2)O_(3)with variable mass ratio.The selectivity of CO_(2)can reach more than 99%under the optimal parameters of methane chemical looping conversion:m(Fe_(2)O_(3)):m(LaFeO_(3))=2:1,the reaction temperature is 900℃,the lattice oxygen conversion is less than 40%.Fe_(2)O_(3)-LaFeO_(3)still has good phase and structure stability after five redox reaction and regeneration cycles.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF-2017M3A7B4052802,NRF-2018R1A5A1025208。
文摘Growing attention to the development of sustainable solar-to-energy conversion applications has resulted in the synthesis of promising and environment-friendly nanomaterials as energy harvesters.Among various carbon nanomaterials,carbon dots(CDs)have received significant attention due to their excellent light absorption capability,broad absorption region,and superior photostability with enormous potential for solar energy applications.Therefore,utilizing and modulating the charge carriers generated from CDs is critical for achieving a high energy conversion efficiency of CDs.Herein,we focus on the distinct characteristics of CDs as energy converters from charge excitation to charge separation and transfer for various solar-to-energy applications,including photovoltaic cells,photocatalysts,and photoelectrocatalysts.We anticipate that this review will offer insight into the synthesis and design of novel nanocomposites with a fundamental analysis of the photochemical properties and future development of energy conversion devices.
基金supported by the support by the Natural Science Foundation of China projects(Nos.22225604 and 22076082)the Frontiers Science Center for New Organic Matter(No.63181206)Haihe Laboratory of Sustainable Chemical Transformations.
文摘With the rapid development of plastic production and consumption globally,the amount of post-consumer plastic waste has reached levels that have posed environmental threats.Considering the substantial CO_(2)emissions throughout the plastic lifecycle from material production to its disposal,photocatalysis is considered a promising strategy for eff ective plastic recycling and upcycling.It can upgrade plastics into value-added products under mild conditions using solar energy,realizing zero carbon emissions.In this paper,we explain the basics of photocatalytic plastic reformation and underscores plastic feedstock reformation pathways into high-value-added products,including both degradation into CO_(2)followed by reformation and direct reformation into high-value-added products.Finally,the current applications of transforming plastic waste into fuels,chemicals,and carbon materials and the outlook on upcycling plastic waste by photocatalysis are presented,facilitating the realization of carbon neutrality and zero plastic waste.