期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Experimental Evaluation of Thermal Conductivity and Other Thermophysical Properties of Nanofluids Based on Functionalized (-OH) Mwcnt Nanoparticles Dispersed in Distilled Water 被引量:1
1
作者 Alexandre Melo Oliveira Amir Zacarias Mesquita +2 位作者 João Gabriel de Oliveira Marques Enio Pedone Bandarra Filho Daniel Artur Pinheiro Palma 《Advances in Nanoparticles》 CAS 2023年第1期32-52,共21页
A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids.... A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids. A great number of materials have potential to be used in nanoparticles production and then in nanofluids;one of them is Multi-Walled Carbon Nano Tubes (MWCNT). They have thermal conductivity around 3000 W/mK while other materials used as nanoparticles like CuO have thermal conductivity of 76.5 W/mK. Due to this fact, MWCNT nanoparticles have potential to be used in nanofluids production, aiming to increase heat transfer rate in energy systems. In this context, the main goal of this paper is to evaluate from the synthesis to the experimental measurement of thermal conductivity of nanofluid samples based on functionalized (-OH) MWCNT nanoparticles. They will be analyzed nanoparticles with different functionalization degrees (4% wt, 6% wt, and 9% wt). In addition, it will be quantified other thermophysical properties (dynamic viscosity, specific heat and specific mass) of the synthetized nanofluids. So, the present work can contribute with experimental data that will help researches in the study and development of MWCNT nanofluids. According to the results, the maximum increment obtained in thermal conductivity was 10.65% in relation to the base fluid (water). 展开更多
关键词 nanofluids Multi-Walled carbon nano tubes (MWCNT) Functionalization Degree Thermal Conductivity Thermophysical Properties
下载PDF
Synthesis and Application of Nanocomposite Reinforced with Decorated Multi Walled Carbon Nanotube with Luminescence Quantum Dots
2
作者 Jassim Hosny Al Dalaeen Yashfeen Khan Anees Ahmad 《Advances in Nanoparticles》 2021年第2期75-93,共19页
Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="&... Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">COVID-19 pandemic, environmental problems such as ener<span>gy crisis, global warming, and contamination from pathogenic mi</span>cro-organisms <span>are still prevailed and strongly demanded progress in high</span></span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">performance</span></span></span><span><span><span style="font-family:;" "=""> energy storing and anti-microbial materials. The nanocomposites are materials <span>that have earned large interest owing to their promising applications for</span> countering global issues related to sustainable energy and</span></span></span><span><span><span style="font-family:;" "=""> a</span></span></span><span><span><span style="font-family:;" "=""> flourishing environ<span>ment. Here, polypyrrole </span></span></span></span><span><span><span style="font-family:;" "="">coated</span></span></span><span><span><span style="font-family:;" "=""> hybrid nanocomposites of multi-walled</span></span></span><span><span><span style="font-family:;" "=""> carbon nanotube and cadmium sulfide quantum dots named MCP were synthe<span>sized using facile and low-cost <i>in-situ</i> oxidative polymerization method.</span> Cha<span>racterization techniques confirmed the synthesis. Electrochemical studies</span> showed that the nanocomposite <span>1-MCP<i> </i></span>showed an impressively higher super capacitance behavior in comparison to f-MWCNT, 7-MCP and 5-MCP. The improved performance of the nanocomposites was attributed mainly to the good conductivity of carbon nanotubes and polypyrrole, high surface area, and stability of the carbon nanotubes and the high electrocatalytic activity of the cadmium sulfide quantum dots. Owing to the synergistic effect of MWCNT, <span>CdS, and PPy the synthesized ternary nanocomposite also inhibited the</span> growth and multiplication of tested bacteria such as <i>S. aureus</i>, and <i>E. coli</i> completely within 24 h. On the whole, the assimilated nanocomposite MCP opens promising aspects for the development of upcoming energy storage devices and as<span style="color:red;"> </span></span></span></span><span><span><span style="font-family:;" "="">an </span></span></span><span><span><span style="font-family:;" "="">antibacterial agent.</span></span></span> 展开更多
关键词 Multi-Walled carbon nano Tube nanoCOMPOSITE CdS QDs POLYPYRROLE Super Capacitance ANTI-BACTERIA
下载PDF
Natural Convection Melting in a Rectangular Heat Storage Tank of Carbon Nanotube Dispersed Latent Heat Storage Material
3
作者 Shin-ichi MORITA Tomoya SAITO +2 位作者 Kazunori TAKAI Yasutaka HAYAMIZU Naoto HARUKI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期847-855,共9页
A dispersion system fluid can convect even if the dispersoid is a solid phase.Therefore,heat exchange performance can be improved while maintaining fluidity using a material with high thermal conductivity as the dispe... A dispersion system fluid can convect even if the dispersoid is a solid phase.Therefore,heat exchange performance can be improved while maintaining fluidity using a material with high thermal conductivity as the dispersoid.This study presents the melting performance evaluation results of a latent heat storage material with a carbon nanotube(CNT)dispersion system with high thermal conductivity,which enhances the thermal conductivity of the latent heat storage material and does not limit free convection.Increasing the thermal conductivity and enhancing the melting convection of the heat storage material result in increased latent heat storage speed.In this study,the thermal conductivity of the latent heat storage material was successfully increased by dispersing CNTs in the material.When 0.1%(in mass)of multi-wall CNT(MWCNT)was dispersed in a paraffin-based latent heat storage material,the shear stress increased by 1.5 times at a shear rate of 500 s^(-1),while taking into account the potential effects of convective inhibition.Therefore,a latent heat storage experiment was conducted in a rectangular heat storage tank using the CNT dispersion composition ratio as a parameter.A rectangular vessel with a heated vertical surface was used for the latent heat storage experiment.The melting speed was determined by comparing the amount of latent heat stored in a CNT-dispersed latent heat storage material and a single-phase latent heat storage material sample.The experimental results show that the time required for the latent heat storage material to completely melt in the heat storage tank was the shortest for the single-phase latent heat storage material sample.However,the fastest melting progress was observed for the sample with 0.02%(in mass)MWCNT content in the melting rate range of up to approximately 40%in the tank.The results indicate that this phenomenon is caused by the difference in the melting rates in the upper part of the tank.The generated data are useful for determining the shape and heat transfer surface arrangement of the latent heat storage tank. 展开更多
关键词 latent heat storage phase change carbon nano tube free convection heat transfer
原文传递
A strategy resisting wrinkling of sandwich structures reinforced using functionally-graded carbon nanotubes
4
作者 Xiaohui REN Senlin ZHANG Zhen WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期243-255,共13页
Sandwich structures have been widely applied in the wing and the horizontal tail of the aircraft,so face sheets of such structure might occur wrinkling deformation in the process of service,which will largely decrease... Sandwich structures have been widely applied in the wing and the horizontal tail of the aircraft,so face sheets of such structure might occur wrinkling deformation in the process of service,which will largely decrease capability of sustaining loads.As a result,this paper aims at proposing a reasonable strategy resisting wrinkling deformation of sandwich structures.To this end,an enhanced higher-order model has been proposed for wrinkling analysis of sandwich structures.Buckling behaviors of a five-layer sandwich plate are firstly analyzed,which is utilized to assess performance of the proposed model.Subsequently,wrinkling behaviors of four sandwich plates are further investigated by utilizing present model,which have been evaluated by using quasi threedimensional(3D)elasticity solutions,3D Finite Element Method(3D-FEM)results and experimental datum.Finally,the present model is utilized to study the buckling and the wrinkling behaviors of sandwich plates reinforced by Carbon Nano Tubes(CNTs).In addition,influence of distribution profile of CNTs on wrinkling behaviors has been analyzed,and a typical distribution profile of CNTs has been chosen to resist wrinkling deformation.Without increase of additional weight,the present strategy can effectively resist wrinkling deformation of sandwich plates,which is rarely reported in published literature. 展开更多
关键词 BUCKLING carbon nano tube Functionally graded plate Higher-order model WRINKLING
原文传递
Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases:Equilibrium&kinetic study 被引量:1
5
作者 Seyyed Salar Meshkat Ebrahim Ghasemy +2 位作者 Alimorad Rashidi Omid Tavakoli Mehdi Esrafili 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第5期361-374,共14页
Herein,nitrogen and sulfur co-doped carbon nanotubes(NS-CNT)adsorbents were synthesized via the chemical vapor deposition technique at 1000°C by employing the camphor,urea and sulfur trioxide pyridine.In this stu... Herein,nitrogen and sulfur co-doped carbon nanotubes(NS-CNT)adsorbents were synthesized via the chemical vapor deposition technique at 1000°C by employing the camphor,urea and sulfur trioxide pyridine.In this study,desulfurization of two types of mercaptans(dibenzothiophene(DBT)and tertiary butyl mercaptan(TBM)as nonlinear and linear forms of mercaptan)was studied.In this regard,a maximum capacity of NS-CNT was obtained as 106.9 and 79.4 mg/g and also the removal efficiencies of 98.6%and 88.3%were achieved after 4 h at 298K and 0.9 g of NS-CNT for DBT and TBM,respectively.Characterization of the NS-CNTs was carried out through exploiting scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and elemental analysis(CHN).The isotherm equilibrium data could be ascribed to the Freundlich nonlinear regression form and the kinetic data was fitted by nonlinear form of the pseudo second order model.The negative values of ΔS^(0),ΔH^(0) and ΔG^(0) specify that the adsorption of both types of mercaptans was a natural exothermic process with a reduced entropy.Maintenance of more than 96%of the adsorption capacity even after nine cycles suggest the NS-CNT as a superior adsorbent for mercaptans removal in the industry.Density functional theory(DFT)calculations were also performed to peruse the effects of S/N co-doping and carbon monovacancy defects in CNTs toward the adsorption of DBT and TBM. 展开更多
关键词 Dibenzothiophene(DBT) Tertiary methyl mercaptan Adsorption carbon nano tube(CNT) DESULFURIZATION Doping
原文传递
Improving the electroconductivity and mechanical properties of cellulosic paper with multi-walled carbon nanotube/polyaniline nanocomposites
6
作者 Xiaochuang Shen Yanjun Tang +3 位作者 Dingding Zhou Junhua Zhang Daliang Guo Gustavo Friederichs 《Journal of Bioresources and Bioproducts》 EI 2016年第1期48-54,共7页
Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold gr... Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold great promise for a wide range of energy-related applications.In the present work,multi-walled carbon nanotube(MWCNT)/polyaniline(PANI)nanocomposites were synthesized via in situ oxidation polymerization process and characterized by FT-IR and TEM.Subsequently,the application of the synthesized MWCNT/PANI nanocomposites as a wet-end filler for the production of electro-conductive paper was demonstrated/developed.Results showed that the cellulosic paper was imparted with an electro-conductivity of up to 0.14 S·m^(-1) while exhibiting a pronounced improvement in mechanical properties as a function of the added MWCNT/PANI nanocomposites. 展开更多
关键词 carbon nano tubes POLYANILINE nanoCOMPOSITES Oxidative polymerization Wet-lay process Cellulosic paper electro-conductivity Mechanical strength
原文传递
Increased photo-catalytic removal of sulfur using titania/MWCNT composite 被引量:1
7
作者 Molood Barmala Abdolsamad Zarringhalam Moghadam Mohammad Reza Omidkhah 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1066-1070,共5页
Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction ... Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol. 展开更多
关键词 photo oxidation DESULFURIZATION SOL-GEL TITANIA multi wall carbon nano tube (MWCNT)
下载PDF
Preparation and Performance of Corona-proof Conductive Composite Coatings
8
作者 WU Jian HAN Wen +8 位作者 ZHAO Yalin YANG Bin JING Yan GENG Mingxin BAI Xiaochun TAN Haiying GE Qizhong LENG Pei SUN Jiuxiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期505-509,共5页
Because of its merits,acrylic resin was chosen to improve the mechanical,conductive and hydrophobic properties.Carbon fiber powders (CF),carbon nanotubes (MWCNT),and nano-TiO_(2) were incorporated into the acrylic res... Because of its merits,acrylic resin was chosen to improve the mechanical,conductive and hydrophobic properties.Carbon fiber powders (CF),carbon nanotubes (MWCNT),and nano-TiO_(2) were incorporated into the acrylic resin to prepare the corona-proof conductive composite coatings.The incorporation of CF and MWCNT may improve the conductivity and mechanical strength of the coatings.However,the addition of nano-TiO_(2) may increase the hydrophobicity of the coatings.Thus,the effects of different additives on the mechanical properties,conductivity,hydrophobicity and heat resistance of the conductive film were studied.The experimental results show that the incorporation of carbon fiber powders and multi walled carbon nanotubes can significantly improve both the conductivity and mechanical properties of the conductive coatings,and the addition of nano titanium dioxide can improve the hydrophobicity of the conductive film. 展开更多
关键词 carbon fiber powders carbon nano tube acrylic resin coating mechanical performance SELF-CLEANING
下载PDF
Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review 被引量:1
9
作者 S.A. GHAHARI E. GHAFARI L. ASSI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期137-147,共11页
Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials h... Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials has been widely reported. This paper combines a critical review on the effect of CNT on the pore and microstructure of cement composite with a discussion on the porosity measurement of pastes containing CNT using mercury intrusion porosimetry techniques (MIP). It was found that, surface treatment by H2SO4 and HNO3 solution forms carboxyl acid groups on CNTs' surfaces that lead to the improvement of reinforcement. In this scope, this review paper involves analyzing the effect of CNT on the microstructure and the pore structure of cementitious materials. The existing methods of measuring the porosity of cementitious material are reviewed, in particular, the contact angle measurement is discussed in detail in which the most effective parameters and possible errors of calculation is presented. 展开更多
关键词 carbon nano tubes MICROSTRUCTURE POROSITY mercury intrusion porosimetry cement composite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部