To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha...To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.展开更多
Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization tre...Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly.展开更多
Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilizati...Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c...Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.展开更多
The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge...The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant...Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant but often burned,contributing to air pollution and greenhouse gas emissions.This review explores the potential of transforming these materials into high-value carbon nanomaterials(CNMs).We explore the potential of transforming these materials into high-value CNMs.By employing techniques like carbonization and activa-tion,LCMs can be converted into various CNMs,including carbon nanotubes(CNTs),graphene(G),graphene oxide(GO),carbon quantum dots(CQDs),nanodiamonds(NDs),fullerenes(F),carbon nanofibers(CNFs),and others.Hybridizing different carbon allotropes further enhances their properties.CNMs derived from cellulose,lignin,and hemicellulose exhibit promising applications in diversefields.For instance,CNTs can be used in energy storage devices like batteries and supercapacitors due to their exceptional electrical conductivity and mechanical strength.Additionally,CNTs can be incorporated into recycled paper as afire retardant additive,enhancing itsflame resistance.G,renowned for its high surface area and excellent electrical conductivity,finds applications in electronics,sensors,catalysis,and water treatment,where it can be used to adsorb heavy metal ions.CQDs,owing to their unique optical properties,are used in bioimaging,drug delivery,and optoelectronic devices.By harnessing the potential of LCMs,we can not only mitigate environmental concerns but also contri-bute to a sustainable future.Continued research is essential to optimize synthesis methods,explore novel applica-tions,and unlock the full potential of these versatile materials.展开更多
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FD...With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network.展开更多
Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)tria...Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)triangle in the southwestern margin of the Yangtze Block is a globally recognized carbonate-hosted Pb-Zn metallogenic province and also an essential part of the South China low-temperature metallogenic domain.This region has>30 million tons(Mt)Zn and Pb resources and shows the enrichment of dispersed metals,such as Ga,Ge,Cd,Se,and Tl.During the past 2 decades,abundant data on mineralization ages of Pb-Zn deposits within the SYG triangle have been documented based on various radioisotopic dating methods,resulting in significant progress in understanding the geodynamic background and ore formation of Pb-Zn deposits hosted in sedimentary rocks at SYG triangle.This paper provides a comprehensive summary of the geochronological results and Pb-Sr isotopic data regarding Pb-Zn deposits in the SYG triangle,which identified two distinct Pb-Zn mineralization periods influencing the dynamic processes associated with the expansion and closure of the Paleo-Tethys Ocean in the western margin of the Yangtze Block.The predominant phase of Pb-Zn mineralization at SYG triangle spanned from the Middle Triassic to Early Jurassic(226-191 Ma),which was intensely correlated with the large-scale basin fluid transport triggered by the closure of the Paleo-Tethys Ocean and Indosinian orogeny.The secondary Pb-Zn mineralization phase occurred during the Late Devonian to Late Carboniferous and was controlled by extensional structures associated with the expansion of the Paleo-Tethys Ocean.Further investigation is necessary to clarify the occurrence and potential factors involved in the Pb-Zn mineralization events during the Late Devonian to Late Carboniferous.展开更多
The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate ...The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.展开更多
Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbon...Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.展开更多
In this paper,we present our efforts on simulating and analyzing the effect of two-dimensional nano-sphere surface array on the characteristic of GaAs solar cells.Based on the scattering and diffraction theory of the ...In this paper,we present our efforts on simulating and analyzing the effect of two-dimensional nano-sphere surface array on the characteristic of GaAs solar cells.Based on the scattering and diffraction theory of the photonic crystals,the simulation results show that the distance of adjacent nano-spheres(D)has the pronounced influence on the conversion efficiency and exhibits much poor tolerance,the absolutely conversion efficiency is reduced by exceeding of 2%as the D varies from 0 to 1μm,in addition,the lower conversion efficiency(<18%)is exhibited and almost remains unaltered when the D is of>2μm.The radius(R)of nano-spheres demonstrates much great tolerance.For D=0,the solar cells exhibit high conversion efficiency(>20%)and the efficiency is only varied by less than 1%when R is varied in a very wide region of 0.3-1.2μm.One can also find out that there is good tolerance for efficiency around the optimal value of refractive index and there is only about 0.2%decrease in final cell efficiency for around±24%variation in the optimal values,which implys that it does not demand high precision processing equipment and the whole nano-sphere array could be fully complemented using self-assembled chemical methods.展开更多
文摘To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.
基金financially supported by the National Natural Science Foundation of China(Nos.U2141207,52171111,and 52001083)the Youth Talent Project of China National Nuclear Corporation(No.CNNC2021Y-TEPHEU01)+3 种基金the China Postdoctoral Science Foundation(No.2020M681077)the Natural Science Foundation of Heilongjiang,China(No.LH2019E030)the Heilongjiang Postdoctoral Science Foundation,China(No.LBH-Z19125)he Heilongjiang Touyan Innovation Team Program,China,and the Natural Science Foundation of Heilongjiang(No.LH2020E060)。
文摘Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly.
基金financially supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2022-049)the Natural Science Foundation of Shanxi Province,China(No.20210302123167)。
文摘Carbon materials are widely recognized as highly promising electrode materials for various energy storage system applications.Coal tar residues(CTR),as a type of carbon-rich solid waste with high value-added utilization,are crucially important for the development of a more sustainable world.In this study,we employed a straightforward direct carbonization method within the temperature range of 700-1000℃to convert the worthless solid waste CTR into economically valuable carbon materials as anodes for potassium-ion batteries(PIBs).The effect of carbonization temperature on the microstructure and the potassium ions storage properties of CTR-derived carbons(CTRCs)were systematically explored by structural and morphological characterization,alongside electrochemical performances assessment.Based on the co-regulation between the turbine layers,crystal structure,pore structure,functional groups,and electrical conductivity of CTR-derived carbon carbonized at 900℃(CTRC-900H),the electrode material with high reversible capacity of 265.6m Ah·g^(-1)at 50 m A·g^(-1),a desirable cycling stability with 93.8%capacity retention even after 100 cycles,and the remarkable rate performance for PIBs were obtained.Furthermore,cyclic voltammetry(CV)at different scan rates and galvanostatic intermittent titration technique(GITT)have been employed to explore the potassium ions storage mechanism and electrochemical kinetics of CTRCs.Results indicate that the electrode behavior is predominantly governed by surface-induced capacitive processes,particularly under high current densities,with the potassium storage mechanism characterized by an“adsorption-weak intercalation”mechanism.This work highlights the potential of CTR-based carbon as a promising electrode material category suitable for high-performance PIBs electrodes,while also provides valuable insights into the new avenues for the high value-added utilization of CTR.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
基金financially supported by the National Natural Science Foundation of China(No.22279047)the Instrumental Analysis Center of Jiangsu University of Science and Technology。
文摘Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.
文摘The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.
文摘Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant but often burned,contributing to air pollution and greenhouse gas emissions.This review explores the potential of transforming these materials into high-value carbon nanomaterials(CNMs).We explore the potential of transforming these materials into high-value CNMs.By employing techniques like carbonization and activa-tion,LCMs can be converted into various CNMs,including carbon nanotubes(CNTs),graphene(G),graphene oxide(GO),carbon quantum dots(CQDs),nanodiamonds(NDs),fullerenes(F),carbon nanofibers(CNFs),and others.Hybridizing different carbon allotropes further enhances their properties.CNMs derived from cellulose,lignin,and hemicellulose exhibit promising applications in diversefields.For instance,CNTs can be used in energy storage devices like batteries and supercapacitors due to their exceptional electrical conductivity and mechanical strength.Additionally,CNTs can be incorporated into recycled paper as afire retardant additive,enhancing itsflame resistance.G,renowned for its high surface area and excellent electrical conductivity,finds applications in electronics,sensors,catalysis,and water treatment,where it can be used to adsorb heavy metal ions.CQDs,owing to their unique optical properties,are used in bioimaging,drug delivery,and optoelectronic devices.By harnessing the potential of LCMs,we can not only mitigate environmental concerns but also contri-bute to a sustainable future.Continued research is essential to optimize synthesis methods,explore novel applica-tions,and unlock the full potential of these versatile materials.
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金supported in part by National Natural Science Foundation of China under Grant 52007026.
文摘With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network.
基金supported by the National Natural Science Foundation of China(92162218,42302101,42202099)the Guizhou Provincial Natural Science Foundation(ZK[2023]477)。
文摘Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)triangle in the southwestern margin of the Yangtze Block is a globally recognized carbonate-hosted Pb-Zn metallogenic province and also an essential part of the South China low-temperature metallogenic domain.This region has>30 million tons(Mt)Zn and Pb resources and shows the enrichment of dispersed metals,such as Ga,Ge,Cd,Se,and Tl.During the past 2 decades,abundant data on mineralization ages of Pb-Zn deposits within the SYG triangle have been documented based on various radioisotopic dating methods,resulting in significant progress in understanding the geodynamic background and ore formation of Pb-Zn deposits hosted in sedimentary rocks at SYG triangle.This paper provides a comprehensive summary of the geochronological results and Pb-Sr isotopic data regarding Pb-Zn deposits in the SYG triangle,which identified two distinct Pb-Zn mineralization periods influencing the dynamic processes associated with the expansion and closure of the Paleo-Tethys Ocean in the western margin of the Yangtze Block.The predominant phase of Pb-Zn mineralization at SYG triangle spanned from the Middle Triassic to Early Jurassic(226-191 Ma),which was intensely correlated with the large-scale basin fluid transport triggered by the closure of the Paleo-Tethys Ocean and Indosinian orogeny.The secondary Pb-Zn mineralization phase occurred during the Late Devonian to Late Carboniferous and was controlled by extensional structures associated with the expansion of the Paleo-Tethys Ocean.Further investigation is necessary to clarify the occurrence and potential factors involved in the Pb-Zn mineralization events during the Late Devonian to Late Carboniferous.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.42425107)Ecological Civilization Special Project of Key Research&and Development Program in Gansu Province(No.24YFFA009)the Top Talent Project of Gansu Province,Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)。
文摘The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.
基金This study was supported by the project ofthe Science and Technology Innovation Fund of Command Center of Natural Resources Intergrated Survey entitled“Temporal and spatial distribution of paleochannel and origin of organic carbon burial in the Western Bohai Sea since 2.28Ma”(KC20220011)the project entitled“Characterization of Carboniferous-Early Permian heterogeneous porous carbonate reservoirs and hydrocarbon potential analysis in the central uplift of the South Yellow Sea Basin”(KLSG2304)+3 种基金by the Key laboratory of Submarine Science,Ministry of Natural Resources,the project entitled“1∶50000 Marine regional Geological survey in Caofeidian Sea Area,Bohai Sea”(ZD20220602)“1∶250000 Marine regional Geological survey in Weihai Sea Area,North Yellow Sea”(DD20230412)“Geological survey on tectonic and sedimentary conditions of Laoshan uplift”(DD2016015)by the China Geological Survey,and the project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)organized by the National Natural Science Foundation of China.
文摘Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.
基金National Nature Science Foundation of China(Grant No.61871350)Zhejiang Provincial Department of Education for their financial support of this research(Grant Nos.Y201121882 and Y201225406)
文摘In this paper,we present our efforts on simulating and analyzing the effect of two-dimensional nano-sphere surface array on the characteristic of GaAs solar cells.Based on the scattering and diffraction theory of the photonic crystals,the simulation results show that the distance of adjacent nano-spheres(D)has the pronounced influence on the conversion efficiency and exhibits much poor tolerance,the absolutely conversion efficiency is reduced by exceeding of 2%as the D varies from 0 to 1μm,in addition,the lower conversion efficiency(<18%)is exhibited and almost remains unaltered when the D is of>2μm.The radius(R)of nano-spheres demonstrates much great tolerance.For D=0,the solar cells exhibit high conversion efficiency(>20%)and the efficiency is only varied by less than 1%when R is varied in a very wide region of 0.3-1.2μm.One can also find out that there is good tolerance for efficiency around the optimal value of refractive index and there is only about 0.2%decrease in final cell efficiency for around±24%variation in the optimal values,which implys that it does not demand high precision processing equipment and the whole nano-sphere array could be fully complemented using self-assembled chemical methods.