The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we pres...The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we present a flexible Li–O2 cell using N-doped carbon nanocages grown onto the carbon textiles(NCNs/CTs)as a self-standing and binder-free O2 electrode.The highly flexible NCNs/CTs exhibits an excellent mechanic durability,a promising catalytic activity towards the ORR and OER,a considerable cyclability of more than 70 cycles with an overpotential of 0.36 V on the 1 stcycle at a constant current density of 0.2 m A/cm2,a good rate capability,a superior reversibility with formation and decomposition of desired Li2 O2,and a highly electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible LOBs.展开更多
Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon na...Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.展开更多
Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond ...Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.展开更多
High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein,...High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein, the ultrasmall (sub-2 nm) nanoparticles of PtRuCoNiCu HEA with uniform element distribution are highly dispersed on hierarchical N-doped carbon nanocages (hNCNC) via low-temperature thermal reduction, denoted as us-HEA/hNCNC. The optimal us-HEA/hNCNC exhibits excellent HER performance in 0.5 M H_(2)SO4 solution, achieving an ultralow overpotential of 19 mV at 10 mA·cm^(−2) (without iR-compensation), high mass activity of 13.1 A·mgnoble metals ^(−1) at −0.10 V and superb stability with a slight overpotential increase of 3 mV after 20,000 cycles of cyclic voltammetry scans, much superior to the commercial Pt/C (20 wt.%). The combined experimental and theoretical studies reveal that the Pt&Ru serve as the main active sites for HER and the CoNiCu species modify the electron density of active sites to facilitate the H* adsorption and achieve an optimum M-H binding energy. The hierarchical pore structure and N-doping of hNCNC support also play a crucial role in the enhancement of HER activity and stability. This study demonstrates an effective strategy to greatly improve the HER performance of noble metals by developing the HEAs on the unique hNCNC support.展开更多
Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on t...Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.展开更多
Metal-nitrogen-carbon materials are promising catalysts for CO2 electroreduction to CO. Herein, by taking the unique hierarchical carbon nanocages as the support, an advanced nickel-nitrogen-carbon single-site catalys...Metal-nitrogen-carbon materials are promising catalysts for CO2 electroreduction to CO. Herein, by taking the unique hierarchical carbon nanocages as the support, an advanced nickel-nitrogen-carbon single-site catalyst is conveniently prepared by pyrolyzing the mixture of NiCl2 and phenanthroline, which exhibits a Faradaic efficiency plateau of > 87% in a wide potential window of −0.6 – −1.0 V. Further S-doping by adding KSCN into the precursor much enhances the CO specific current density by 68%, up to 37.5 A·g−1 at −0.8 V, along with an improved CO Faradaic efficiency plateau of > 90%. Such an enhancement can be ascribed to the facilitated CO pathway and suppressed hydrogen evolution from thermodynamic viewpoint as well as the increased electroactive surface area and improved charge transfer fromkinetic viewpoint due to the S-doping. This study demonstrates a simple and effective approach to advanced electrocatalysts by synergetic modification of the porous carbon-based support and electronic structure of the active sites.展开更多
An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carb...An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko's toe. The properties of the NCNC-reinforced Nation membrane, the electro- mechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nation-IPMC actuator shows a displacement and force that are 1.6 - 2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nation membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nation. The NCNC/Nation-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 raN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm^-2) and 1256.6 mN (279 mN·cm^-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots.展开更多
Highly effident metal-free, carbon-based, bi-functional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have attracted increased attention for use in electrochemical en...Highly effident metal-free, carbon-based, bi-functional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have attracted increased attention for use in electrochemical energy conversion systems, owing to their low cost and high activity. In this work, N-doped carbon nanocages (N-CCs) with a porous self-supported architecture and high specific surface area are synthesized by a facile interfacial assembly synthetic route. The materials are comprehensively characterized by scanning electron microscop36 transmission electron microscopy, nitrogen adsorption-desorption experiments, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry , chronoamperometry, and linear sweep voltammetry demonstrate that the as-prepared N-CC could serve as an effective metal-free electrocatalyst with excellent catalytic activity, long-term operation durability, and excellent methanol tolerance for the ORR in alkaline media. In the presence of 3 mM methanol, the half wave potential of the N-CCs for the ORR is 190 mV; this is more positive than that of the commercial Pt/C electrocatalyst. Meanwhile, the N-CCs also show an OER activity comparable to that of the commercial Ru/C electrocatalyst, revealing their bifunctional property.展开更多
Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybri...Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.展开更多
Novel hierarchical carbon nanocages (hCNCs) are proposed as high-rate anodes for Li- and Na-ion batteries. The unique structure of the porous network for hCNCs greatly favors electrolyte penetration, ion diffusion, ...Novel hierarchical carbon nanocages (hCNCs) are proposed as high-rate anodes for Li- and Na-ion batteries. The unique structure of the porous network for hCNCs greatly favors electrolyte penetration, ion diffusion, electron conduction, and structural stability, resulting in high rate capability and excellent cyclability. For lithium storage, the corresponding electrode stores a steady reversible capacity of 970 mAh·g^-1 at a rate of 0.1 A·g^-1 after 10 cycles, and stabilizes at 229 mAh·g^-1 after 10,000 cycles at a high rate of 25 A·g^-1(33 s for full-charging) while delivering a large specific power of 37 kW·kgelectrode^-1 and specific energy of 339 Wh·kgelectrode^-1. For sodium storage, the hCNC reaches a high discharge capacity of -50 mAh·g^-1 even at a high rate of 10 A·g^-1.展开更多
Light-weight and exceptional microwave absorption are two vital characteristics for microwave absorbers in practical applications,but still face challenges.Herein,we employ a sacrificial template strategy to fabricate...Light-weight and exceptional microwave absorption are two vital characteristics for microwave absorbers in practical applications,but still face challenges.Herein,we employ a sacrificial template strategy to fabricate heteroatoms-doped carbon nanocages(CNs)via chemical vapor deposition,in which heteroatoms are simultaneously doped into the carbon frameworks by bubbling flowing source liquid.Compared with CNs,doped heteroatoms,accompanied with the inevitably defective arrangements in the lattice,not only decrease the electrical conductivity and balance the impedance characteristics,but also introduce structuralchemical defects and trigger dominant dipolar/defect polarization.As a result,both the minimum reflection loss(R_(L,min))and effective absorption bandwidth(EAB)greatly increase at an ultralow filler loading of 5 wt.%owing to internal hollow void and high specific surface area.The R_(L,min) values reach−53.6,−43.2,and−50.1 dB for N-CNs,S-CNs,and N,S-CNs with the corresponding EAB of 4.9,2.5,and 3.1 GHz,respectively.Furthermore,this work provides an effective strategy for the construction of heteroatoms-doped hollow carbon frameworks in large-scale production and the obtained doped carbon nanocages can be used as light-weight and high-performance microwave absorbers.展开更多
Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices(ESDs).Herein,interconnected N/P co-doped carbon nanocage(NP-CNC)was synthesized from pyrene molecules by using nano-Mg...Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices(ESDs).Herein,interconnected N/P co-doped carbon nanocage(NP-CNC)was synthesized from pyrene molecules by using nano-MgO as template and melamine-phytic acid supramolecular aggregate as dopant coupled with KOH activation.The as-prepared NP-CNC possesses interconnected nanocages for electron transportation and abundant micropores for ion adsorption.Moreover,co-doped N/P species in NP-CNC provide active sites and additional pseudocapacitance.Consequently,NP-CNC as electrode material for symmetric supercapacitor exhibits a high gravimetric capacitance of 435 F·g^(-1) at 0.05 A·g^(-1),high volumetric capacitance of 274 F·cm^(-3) at 0.032 A·cm^(-3),and long cycle lifespan with 96.1%capacitance retention after 50,000 cycles.Furthermore,NP-CNC as cathode for zinc-ion hybrid supercapacitor delivers satisfactory energy and power densities of 130.6 Wh·kg^(-1)(82.3 Wh·L^(-1))and 14.4 kW·kg^(-1)(9.1 kWL^(-1)).This work paves a promising approach to the preparation of high capacitance NP-CNC for ESDs.展开更多
Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their co...Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their compositional and morphological regulations,the performances to date are still quite limited owing to the low active surface area and sluggish charge transfer kinetics.Herein,different Co-based nanocrystals(Co-NCs)were conveniently anchored on the hierarchical nitrogen-doped carbon nanocages(hNCNCs)with high specific surface area and coexisting micro-meso-macropores to decrease the size and facilitate the charge transfer.Accordingly,a high specific capacity of1170 Fg^-1 is achieved at 2 Ag^-1 for the Co(OH)2/hNCNCs hybrid,in which the capacitance of Co(OH)2(2214 F gco(OH)2)is approaching to its theoretical maximum(2595 Fg^-1),demonstrating the high utilization of active materials by the hybridization with N-doped nanocarbons.This study also reveals that these Co-NCs store/release electrical energy via the same reversible redox reaction despite their different pristine compositions.This insight on the energy storage of Co-based nanomaterials suggests that the commonly-employed transformation of the Co-NCs from Co(OH)2 to CoO and Co3 O4 on carbon supports is unnecessary and even could be harmful to the energy storage performance.The result is instructive to develop high-energy-density electrodes from transition metal compounds.展开更多
Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density...Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density but usually at the expense of power density due to the large ion size,low ionic conductivity and high viscosity.Herein we demonstrate a simultaneous increase of the energy and power densities with ionic liquid electrolyte(EMIMBF4)mainly by enlarging the ion-transfer micropore channels of the electrode material,i.e.,the unique hierarchical carbon nanocages(hCNC).Boudouard reaction is adopted to tune the micropore size while remaining the hierarchical framework of hCNC.Meanwhile,the specific surface area,pore volume and conductivity are also increased under optimal activation temperature.Such a unique modification boosts the large-sized ion transfer,leading to the obvious decrease of equivalent series resistance and the dramatic increase of supercapacitive performance thereof.The optimized product exhibits an energy density up to 153.8 W h kg^(-1) at the power density of 1.8 kW kg^(-1),and maintains 54.0 W h kg^(-1) even at an ultrahigh power density of 480.1 kW kg^(-1).This study demonstrates an effective way to explore advanced electrode materials by the fine regulation of micropores and related properties.展开更多
The cathode of lithium-oxygen(Li-O_(2))batteries should have large space for high Li_(2)O_(2) uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan.Herein,a high-performance MnO...The cathode of lithium-oxygen(Li-O_(2))batteries should have large space for high Li_(2)O_(2) uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan.Herein,a high-performance MnO_(x)/hCNC cathode was constructed by the defect-induced deposition of manganese oxide(MnOx)nanoparticles on hierarchical carbon nanocages(hCNC).The corresponding Li-O2 battery(MnOx/hCNC@Li-O_(2))exhibited excellent electrocatalytic activity with the low overpotential of 0.73-0.99 V in the current density range of 0.1-1.0 A·g^(-1).The full discharge capacity and cycling life of MnO_(x)/hCNC@Li-O_(2) were increased by~86.7%and~91%,respectively,compared with the hCNC@Li-O_(2) counterpart.The superior performance of MnO_(x)/hCNC cathode was ascribed to(i)the highly dispersed MnO_(x) nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions,(ii)the interconnecting pore structure for increasing Li_(2)O_(2) accommodation and facilitating charge/mass transfer,and(iii)the concealed surface defects of hCNC for suppressing side reactions.This study demonstrated an effective strategy to improve the performance of Li-O_(2) batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.展开更多
Semihydrogenation of trace acetylene in an ethylene gas stream is a vital step for the industrial production of polyethylene,in which Pd single-site catalysts(SSCs)have great potential.Herein,two Pd SSCs with differen...Semihydrogenation of trace acetylene in an ethylene gas stream is a vital step for the industrial production of polyethylene,in which Pd single-site catalysts(SSCs)have great potential.Herein,two Pd SSCs with different coordination structures are prepared on hierarchical nitrogen-doped carbon nanocages(hNCNC)by regulating the nitrogen species with or without using dicyandiamide.With using dicyandiamide,the obtained Pd1-Ndicy/hNCNC SSC features the coordinated Pd by two pyridinic N and two pyrrolic N(PdN^(py)_(2)N^(pr)_(2)).Without using dicyandiamide,the obtained Pd1/hNCNC SSC features the coordinated Pd by pyridinic N and C(PdN^(py_(x)C_(4-x)),x=1-4).The former exhibits an 18-fold increase in catalytic activity compared to the latter.Theoretical results reveal the abundant unoccupied orbital states above the Fermi level of moiety,which can facilitate the activation of substrate molecules and dynamics of acetylene hydrogenation as supported by the combined theoretical and experimental results.In addition,PdN^(py)_(2)N^(pr)_(2)the moiety presents a favorable desorption of ethylene.Consequently,the Pd1-Ndicy/hNCNC SSC exhibits high C2H2 conversion(99%)and C2H4 selectivity(87%)at 160℃.This study demonstrates the impact of Pd single-site coordination structure on catalytic performance,which is significant for the rational design of advanced Pd SSCs on carbon-based supports.展开更多
基金supported by National Key R&D Program of China(2016YFB0100500)Special fund of key technology research and development projects(20180201097GX)(20180201099GX)(20180201096GX)+5 种基金Jilin Province Science and Technology Department.The R&D Program of power batteries with low temperature and high energy,Science and Technology Bureau of Changchun(19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversityGeneral Financial Grant from the China Postdoctoral Science Foundation(Grant 2016M601363)Fundamental Research Funds for the Central Universities(Grant2412017QD011)Jilin Scientific and Technological Development Program(Grant 20180520143JH)National Natural Science Foundation of China(Grant 21805030)。
文摘The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we present a flexible Li–O2 cell using N-doped carbon nanocages grown onto the carbon textiles(NCNs/CTs)as a self-standing and binder-free O2 electrode.The highly flexible NCNs/CTs exhibits an excellent mechanic durability,a promising catalytic activity towards the ORR and OER,a considerable cyclability of more than 70 cycles with an overpotential of 0.36 V on the 1 stcycle at a constant current density of 0.2 m A/cm2,a good rate capability,a superior reversibility with formation and decomposition of desired Li2 O2,and a highly electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible LOBs.
基金financially supported by National Key Research and Development Program of China(No.2021YFA1401103)the National Natural Science Foundation of China(Nos.61825403,61921005 and 61904049)。
文摘Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.
基金support from the National Key Research and Development Program of China(No.2021YFA1500900)the National Natural Science Foundation of China(Nos.21832003,21972061,52071174)+2 种基金the Natural Science Foundation of Jiangsu Province,Major Project(No.BK20212005)China Postdoctoral Science Foundation(No.2022M711564)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX2021119).
文摘Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation.
基金supported by the National Key Research and Development Program of China(No.2021YFA1500900)the National Natural Science Foundation of China(No.52071174)+1 种基金the Natural Science Foundation of Jiangsu Province(Major Project:No.BK20212005)the Foundation of Science and Technology of Suzhou(No.SYC2022102).
文摘High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein, the ultrasmall (sub-2 nm) nanoparticles of PtRuCoNiCu HEA with uniform element distribution are highly dispersed on hierarchical N-doped carbon nanocages (hNCNC) via low-temperature thermal reduction, denoted as us-HEA/hNCNC. The optimal us-HEA/hNCNC exhibits excellent HER performance in 0.5 M H_(2)SO4 solution, achieving an ultralow overpotential of 19 mV at 10 mA·cm^(−2) (without iR-compensation), high mass activity of 13.1 A·mgnoble metals ^(−1) at −0.10 V and superb stability with a slight overpotential increase of 3 mV after 20,000 cycles of cyclic voltammetry scans, much superior to the commercial Pt/C (20 wt.%). The combined experimental and theoretical studies reveal that the Pt&Ru serve as the main active sites for HER and the CoNiCu species modify the electron density of active sites to facilitate the H* adsorption and achieve an optimum M-H binding energy. The hierarchical pore structure and N-doping of hNCNC support also play a crucial role in the enhancement of HER activity and stability. This study demonstrates an effective strategy to greatly improve the HER performance of noble metals by developing the HEAs on the unique hNCNC support.
基金The work was supported by the National Natural Science Foundation of China(Nos.52104314,51972287,U2004172,and 51502269)Natural Science Foundation of Henan Province(No.202300410368)+2 种基金the Special Project of Key Research Development and Promotion of Henan Province(No.222102240084)Sponsored by Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT001)the Foundation for University Key Teachers of Henan Province(No.2020GGJS009).
文摘Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.
基金the National Key Research and Development Program of China(Nos.2017 YFA0206500 and 2018YFA0209103)the National Natural Science Foundation of China(Nos.21832003,21773111,21972061,51571110,and 21573107).The numerical calculations have been done on the computing facilities in the High Performance Computing Center(HPCC)of Nanjing University.
文摘Metal-nitrogen-carbon materials are promising catalysts for CO2 electroreduction to CO. Herein, by taking the unique hierarchical carbon nanocages as the support, an advanced nickel-nitrogen-carbon single-site catalyst is conveniently prepared by pyrolyzing the mixture of NiCl2 and phenanthroline, which exhibits a Faradaic efficiency plateau of > 87% in a wide potential window of −0.6 – −1.0 V. Further S-doping by adding KSCN into the precursor much enhances the CO specific current density by 68%, up to 37.5 A·g−1 at −0.8 V, along with an improved CO Faradaic efficiency plateau of > 90%. Such an enhancement can be ascribed to the facilitated CO pathway and suppressed hydrogen evolution from thermodynamic viewpoint as well as the increased electroactive surface area and improved charge transfer fromkinetic viewpoint due to the S-doping. This study demonstrates a simple and effective approach to advanced electrocatalysts by synergetic modification of the porous carbon-based support and electronic structure of the active sites.
基金This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51605220, U1637101, 51435008), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160793), the High Level Introduction of Talent Research Start-up Fund in NUAA (Grant No. 1011-YAH16010), and Open Project Fund in Jiangsu Provincial Key Laboratory for Interventional Medical Devices (Grant No. jr1601). The authors would very much like to thank Professor Stanislav N. Gorb in the Department of Functional Morphology and Biome- chanics in the Zoological Institute of the University of Kiel, Germany, for his help with the mushroom-shapeddry adhesives, and also thank Dr. Yajun Xue and Miss Yan Ding for help with the SEM observations.
文摘An advanced electro-active dry adhesive, which was composed of a mushroom-shaped tibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs), was developed to imitate the actuation of a gecko's toe. The properties of the NCNC-reinforced Nation membrane, the electro- mechanical properties of the NCNC-reinforced IPMC, and the related electro-active adhesion ability were investigated. The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane, and there was a seamless connection with no clear interface between the dry adhesive and the IPMC. Our 0.1 wt% NCNC/Nation-IPMC actuator shows a displacement and force that are 1.6 - 2 times higher than those of the recast Nafion-IPMC. This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nation membrane, as well as interactions between the NCNCs and the sulfonated groups of the Nation. The NCNC/Nation-IPMC was used to effectively actuate the mushroom-shaped dry adhesive. The normal adhesion forces were 7.85 raN, 12.1 mN, and 51.7 mN at sinusoidal voltages of 1.5 V, 2.5 V, and 3.5 V, respectively, at 0.1 Hz. Under the bionic leg trail, the normal and shear forces were approximately 713.5 mN (159 mN·cm^-2) and 1256.6 mN (279 mN·cm^-2), respectively, which satisfy the required adhesion. This new electro-active dry adhesive can be applied for active, distributed actuation and flexible grip in robots.
基金This research was sponsored by Key Technologies R&D Program of Shaanxi Province (Nos. 2014K10-06 and 2015XT-18), the National Natural Science Foundation of China (Nos. 51373092 and 21543012), the Funda-mental Research Funds for the Central Universities (Nos. GK201503038 and GK201501002), Program for Key Science & Technology Innovation Team of Shaanxi Province (No. 2015KCT-13), and the 111 Project (No. B14041).
文摘Highly effident metal-free, carbon-based, bi-functional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have attracted increased attention for use in electrochemical energy conversion systems, owing to their low cost and high activity. In this work, N-doped carbon nanocages (N-CCs) with a porous self-supported architecture and high specific surface area are synthesized by a facile interfacial assembly synthetic route. The materials are comprehensively characterized by scanning electron microscop36 transmission electron microscopy, nitrogen adsorption-desorption experiments, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry , chronoamperometry, and linear sweep voltammetry demonstrate that the as-prepared N-CC could serve as an effective metal-free electrocatalyst with excellent catalytic activity, long-term operation durability, and excellent methanol tolerance for the ORR in alkaline media. In the presence of 3 mM methanol, the half wave potential of the N-CCs for the ORR is 190 mV; this is more positive than that of the commercial Pt/C electrocatalyst. Meanwhile, the N-CCs also show an OER activity comparable to that of the commercial Ru/C electrocatalyst, revealing their bifunctional property.
基金supported by the National Natural Science Foundation of China(51232003,21473089,21373108,21173115)the National Basic Research Program of China(2013CB932902)+2 种基金Jiangsu Province Science and Technology Support Project(BE2012159)Suzhou Science and Technology Plan projects(ZXG2013025)National Science Fund for Talent Training in Basic Science(J1103310)
文摘Taking advantage of the nitrogen(N)-participation and large surface area of N-doped carbon nanocages(NCNCs),the Co Ox nanocrystals are conveniently immobilized onto the NCNCs with high dispersion.The Co Ox/NCNCs hybrid exists in the mixed valence with predominant Co O over Co3O4 and demonstrates superb oxygen reduction reaction activity and stability remaining^94%current density even after operation over 100 h.These results suggest a promising strategy to develop advanced electrocatalysts with the novel NCNCs or even beyond.
基金Acknowledgements This work was jointly supported by the National Natural Science Foundation of China (Nos. 21473089, 51232003, 21373108, 21173115, and 21203092), the National Basic Research Program of China (No. 2013CB932902), Suzhou Program (No. ZXG2013025) and Changzhou Technology Support Program (No. CE20130032).
文摘Novel hierarchical carbon nanocages (hCNCs) are proposed as high-rate anodes for Li- and Na-ion batteries. The unique structure of the porous network for hCNCs greatly favors electrolyte penetration, ion diffusion, electron conduction, and structural stability, resulting in high rate capability and excellent cyclability. For lithium storage, the corresponding electrode stores a steady reversible capacity of 970 mAh·g^-1 at a rate of 0.1 A·g^-1 after 10 cycles, and stabilizes at 229 mAh·g^-1 after 10,000 cycles at a high rate of 25 A·g^-1(33 s for full-charging) while delivering a large specific power of 37 kW·kgelectrode^-1 and specific energy of 339 Wh·kgelectrode^-1. For sodium storage, the hCNC reaches a high discharge capacity of -50 mAh·g^-1 even at a high rate of 10 A·g^-1.
基金supported by the Natural Science Foundation of Shaanxi Province(No.2022JM-260)the Natural Science Foundation of Shandong Province(No.ZR2020ME038)the Fundamental Research Funds of the Central Universities(No.G2022KY05109).
文摘Light-weight and exceptional microwave absorption are two vital characteristics for microwave absorbers in practical applications,but still face challenges.Herein,we employ a sacrificial template strategy to fabricate heteroatoms-doped carbon nanocages(CNs)via chemical vapor deposition,in which heteroatoms are simultaneously doped into the carbon frameworks by bubbling flowing source liquid.Compared with CNs,doped heteroatoms,accompanied with the inevitably defective arrangements in the lattice,not only decrease the electrical conductivity and balance the impedance characteristics,but also introduce structuralchemical defects and trigger dominant dipolar/defect polarization.As a result,both the minimum reflection loss(R_(L,min))and effective absorption bandwidth(EAB)greatly increase at an ultralow filler loading of 5 wt.%owing to internal hollow void and high specific surface area.The R_(L,min) values reach−53.6,−43.2,and−50.1 dB for N-CNs,S-CNs,and N,S-CNs with the corresponding EAB of 4.9,2.5,and 3.1 GHz,respectively.Furthermore,this work provides an effective strategy for the construction of heteroatoms-doped hollow carbon frameworks in large-scale production and the obtained doped carbon nanocages can be used as light-weight and high-performance microwave absorbers.
基金The authors thank the financial supports from the National Natural Science Foundation of China(Nos.51872005,52072002,and U1710116)the WanJiang Scholar Program.
文摘Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices(ESDs).Herein,interconnected N/P co-doped carbon nanocage(NP-CNC)was synthesized from pyrene molecules by using nano-MgO as template and melamine-phytic acid supramolecular aggregate as dopant coupled with KOH activation.The as-prepared NP-CNC possesses interconnected nanocages for electron transportation and abundant micropores for ion adsorption.Moreover,co-doped N/P species in NP-CNC provide active sites and additional pseudocapacitance.Consequently,NP-CNC as electrode material for symmetric supercapacitor exhibits a high gravimetric capacitance of 435 F·g^(-1) at 0.05 A·g^(-1),high volumetric capacitance of 274 F·cm^(-3) at 0.032 A·cm^(-3),and long cycle lifespan with 96.1%capacitance retention after 50,000 cycles.Furthermore,NP-CNC as cathode for zinc-ion hybrid supercapacitor delivers satisfactory energy and power densities of 130.6 Wh·kg^(-1)(82.3 Wh·L^(-1))and 14.4 kW·kg^(-1)(9.1 kWL^(-1)).This work paves a promising approach to the preparation of high capacitance NP-CNC for ESDs.
基金jointly supported by the National Key Research and Development Program of China(2017YFA0206500and 2018YFA0209103)the National Natural Science Foundation of China(21832003,21773111,51571110 and 21573107)the Fundamental Research Funds for the Central Universities(020514380126)
文摘Cobalt-based oxygenic compounds Co(OH)2,CoO and Co3 O4 are attractive for electrochemical energy storage owing to their high theoretical capacities and pseudocapacitive properties.Despite the great efforts to their compositional and morphological regulations,the performances to date are still quite limited owing to the low active surface area and sluggish charge transfer kinetics.Herein,different Co-based nanocrystals(Co-NCs)were conveniently anchored on the hierarchical nitrogen-doped carbon nanocages(hNCNCs)with high specific surface area and coexisting micro-meso-macropores to decrease the size and facilitate the charge transfer.Accordingly,a high specific capacity of1170 Fg^-1 is achieved at 2 Ag^-1 for the Co(OH)2/hNCNCs hybrid,in which the capacitance of Co(OH)2(2214 F gco(OH)2)is approaching to its theoretical maximum(2595 Fg^-1),demonstrating the high utilization of active materials by the hybridization with N-doped nanocarbons.This study also reveals that these Co-NCs store/release electrical energy via the same reversible redox reaction despite their different pristine compositions.This insight on the energy storage of Co-based nanomaterials suggests that the commonly-employed transformation of the Co-NCs from Co(OH)2 to CoO and Co3 O4 on carbon supports is unnecessary and even could be harmful to the energy storage performance.The result is instructive to develop high-energy-density electrodes from transition metal compounds.
基金supported by the National Key Research and Development Program of China (2017YFA0206500and 2018YFA0209103)the National Natural Science Foundation of China (21832003, 21773111, 21573107 and 21971061)the Fundamental Research Funds for the Central Universities (020514380126)
文摘Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density but usually at the expense of power density due to the large ion size,low ionic conductivity and high viscosity.Herein we demonstrate a simultaneous increase of the energy and power densities with ionic liquid electrolyte(EMIMBF4)mainly by enlarging the ion-transfer micropore channels of the electrode material,i.e.,the unique hierarchical carbon nanocages(hCNC).Boudouard reaction is adopted to tune the micropore size while remaining the hierarchical framework of hCNC.Meanwhile,the specific surface area,pore volume and conductivity are also increased under optimal activation temperature.Such a unique modification boosts the large-sized ion transfer,leading to the obvious decrease of equivalent series resistance and the dramatic increase of supercapacitive performance thereof.The optimized product exhibits an energy density up to 153.8 W h kg^(-1) at the power density of 1.8 kW kg^(-1),and maintains 54.0 W h kg^(-1) even at an ultrahigh power density of 480.1 kW kg^(-1).This study demonstrates an effective way to explore advanced electrode materials by the fine regulation of micropores and related properties.
基金This work was jointly financed by the National Key Research and Development Program of China(Nos.2018YFA0209100 and 2017YFA0206500)the National Natural Science Foundation of China(NSFC)(Nos.21832003,21972061,and 21773111)the Fundamental Research Funds for the Central Universities(No.020514380237)。
文摘The cathode of lithium-oxygen(Li-O_(2))batteries should have large space for high Li_(2)O_(2) uptake and superior electrocatalytic activity to oxygen evolution/reduction for long lifespan.Herein,a high-performance MnO_(x)/hCNC cathode was constructed by the defect-induced deposition of manganese oxide(MnOx)nanoparticles on hierarchical carbon nanocages(hCNC).The corresponding Li-O2 battery(MnOx/hCNC@Li-O_(2))exhibited excellent electrocatalytic activity with the low overpotential of 0.73-0.99 V in the current density range of 0.1-1.0 A·g^(-1).The full discharge capacity and cycling life of MnO_(x)/hCNC@Li-O_(2) were increased by~86.7%and~91%,respectively,compared with the hCNC@Li-O_(2) counterpart.The superior performance of MnO_(x)/hCNC cathode was ascribed to(i)the highly dispersed MnO_(x) nanoparticles for boosting the reversibility of oxygen evolution/reduction reactions,(ii)the interconnecting pore structure for increasing Li_(2)O_(2) accommodation and facilitating charge/mass transfer,and(iii)the concealed surface defects of hCNC for suppressing side reactions.This study demonstrated an effective strategy to improve the performance of Li-O_(2) batteries by constructing cathodes with highly dispersed catalytic sites and hierarchical porous structure.
基金supported by the National Key Research and Development Program of China(No.2021YFA1500900)the National Natural Science Foundation of China(No.52071174)the Natural Science Foundation of Jiangsu Province,Major Project(No.BK20212005).
文摘Semihydrogenation of trace acetylene in an ethylene gas stream is a vital step for the industrial production of polyethylene,in which Pd single-site catalysts(SSCs)have great potential.Herein,two Pd SSCs with different coordination structures are prepared on hierarchical nitrogen-doped carbon nanocages(hNCNC)by regulating the nitrogen species with or without using dicyandiamide.With using dicyandiamide,the obtained Pd1-Ndicy/hNCNC SSC features the coordinated Pd by two pyridinic N and two pyrrolic N(PdN^(py)_(2)N^(pr)_(2)).Without using dicyandiamide,the obtained Pd1/hNCNC SSC features the coordinated Pd by pyridinic N and C(PdN^(py_(x)C_(4-x)),x=1-4).The former exhibits an 18-fold increase in catalytic activity compared to the latter.Theoretical results reveal the abundant unoccupied orbital states above the Fermi level of moiety,which can facilitate the activation of substrate molecules and dynamics of acetylene hydrogenation as supported by the combined theoretical and experimental results.In addition,PdN^(py)_(2)N^(pr)_(2)the moiety presents a favorable desorption of ethylene.Consequently,the Pd1-Ndicy/hNCNC SSC exhibits high C2H2 conversion(99%)and C2H4 selectivity(87%)at 160℃.This study demonstrates the impact of Pd single-site coordination structure on catalytic performance,which is significant for the rational design of advanced Pd SSCs on carbon-based supports.