期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Solvent-free carbon sphere nanofluids towards intelligent lubrication regulation
1
作者 Sheng ZHANG Wen LI +2 位作者 Xiaoliang MA Xiaoqiang FAN Minhao ZHU 《Friction》 SCIE EI CAS CSCD 2024年第1期95-109,共15页
By simply switching the electrical circuit installed on steel/steel contact,the tribological behaviors of nanofluids(NFs)can be regulated in real time,thereby achieving the desired performance of friction reduction an... By simply switching the electrical circuit installed on steel/steel contact,the tribological behaviors of nanofluids(NFs)can be regulated in real time,thereby achieving the desired performance of friction reduction and wear resistance.Herein,solvent-free carbon spherical nanofluids(C-NFs)were successfully prepared for intelligent lubrication regulation.C-NFs with excellent lubrication performance can immediately reduce the coefficient of friction(COF)despite applying a weak electric potential(1.5 V).Moreover,polyethylene glycol 400(PEG400)containing 5.0 wt%C-NFs remained responsive to electrical stimulation under the intermittent voltage application with an average coefficient of friction(ACOF)reduction of 20.8%over PEG400.Such intelligent lubrication regulation of C-NFs under an external electric field(EEF)mainly depends on the orderly arranged double-electric adsorption film of ion canopy-adsorbed carbon spheres(CSs).The intermittent electrical application can continuously reinforce the adsorption film and its durability for real-time controlling the sliding interfaces.Electrical-stimulation-responsive intelligent lubricants provide a new technical support for realizing intelligent stepless control of devices. 展开更多
关键词 solvent-free carbon spherical nanofluids(C-NFs) intelligent lubrication regulation lubrication performance adsorption film
原文传递
Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication based on molecular dynamic simulation 被引量:3
2
作者 Dexiang WANG Yu ZHANG +3 位作者 Qiliang ZHAO Jingliang JIANG Guoliang LIU Changhe LI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第1期71-92,共22页
Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication(MQL).However,the formation mechanism of lubrication films generated by carbon group nanofluids... Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication(MQL).However,the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence.Here,molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL,MQL,and dry grinding conditions.Three kinds of carbon group nanoparticles,i.e.,nanodiamond(ND),carbon nanotube(CNT),and graphene nanosheet(GN),were taken as representative specimens.The[BMIM]BF4 ionic liquid was used as base fluid.The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride(CBN),respectively.Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions.The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film.Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition,with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face.The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area.Under the nanofluid MQL condition,the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface.The behaviors involved the rolling effect of ND,the rolling and sliding effects of CNT,and the interlayer shear effect of GN.Compared with the findings under the MQL condition,the tangential grinding forces could be further reduced by 8.5%,12.0%,and 14.1%under the diamond,CNT,and graphene nanofluid MQL conditions,respectively. 展开更多
关键词 GRINDING minimum quantity lubrication carbon group nanofluid tribological mechanism
原文传递
Enhanced Heat Transfer of Carbon Nanotube Nanofluid Microchannels Applied on Cooling Gallium Arsenide Cell 被引量:5
3
作者 ZHANG Huiying YAN Suying +3 位作者 WANG Tao WU Yuting ZHAO Xiaoyan ZHAO Ning 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1475-1486,共12页
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui... Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system. 展开更多
关键词 concentrated photovoltaic solar cell thermal conductivity carbon nanotube nanofluids field synergy principle heat transfer property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部