Carbon nanotubes(CNTs) have received broad attention in the past decades due to their excellent physical and chemical properties and thus been regarded as a powerful candidate for future star-materials. Although vario...Carbon nanotubes(CNTs) have received broad attention in the past decades due to their excellent physical and chemical properties and thus been regarded as a powerful candidate for future star-materials. Although various CNT products and their related applications have been demonstrated recently, their performance can hardly meet the researchers’ expectations compared with their theoretical properties. The current predicament is caused by the immature synthesis method, including the basic science and the producing technology. As the synthesis with controlled structures determines its future, this review summarizes the progress on the basic research and industrialization of CNTs in the past decades, including the fine structure control, aggregation status design and scale-up production, and further points out the way for the future development of CNTs combining with specific applications.展开更多
Graphene and carbon nanotube(CNT) are representative carbon nanomaterials which have aroused numerous research interest due to their extraordinary material properties and promising application potentials,especially in...Graphene and carbon nanotube(CNT) are representative carbon nanomaterials which have aroused numerous research interest due to their extraordinary material properties and promising application potentials,especially in the energy storage and conversion areas.However,the agglomeration happening in these materials has largely blocked their applications.Hybridization of CNT with graphene can,on one hand,prevent the agglomeration behavior,on the other hand,generate a synergistic effect between them with enhanced physical and chemical properties.There have been many studies conducted to find out the suitable approaches to synthesize graphene/CNT composites,and realize the application potentials of these structures.Based on the recent advances,this paper reviews the current research progress that has been achieved in synthesizing graphene/CNT composites,and the energy-related applications.Through this review,we aim at stimulating more significant research on this subject.展开更多
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui...Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.展开更多
基金supported by the Ministry of Science and Technology of China (2016YFA0200101 and 2016YFA0200104)the National Natural Science Foundation of China (51432002, 21790052 and 51720105003)+2 种基金Beijing Municipal Science and Technology Planning Project (Z161100002116026)China PostdoctoralScience Foundation (8201400852 and 8201400892)the National Program for Thousand Young Talents of China
文摘Carbon nanotubes(CNTs) have received broad attention in the past decades due to their excellent physical and chemical properties and thus been regarded as a powerful candidate for future star-materials. Although various CNT products and their related applications have been demonstrated recently, their performance can hardly meet the researchers’ expectations compared with their theoretical properties. The current predicament is caused by the immature synthesis method, including the basic science and the producing technology. As the synthesis with controlled structures determines its future, this review summarizes the progress on the basic research and industrialization of CNTs in the past decades, including the fine structure control, aggregation status design and scale-up production, and further points out the way for the future development of CNTs combining with specific applications.
文摘Graphene and carbon nanotube(CNT) are representative carbon nanomaterials which have aroused numerous research interest due to their extraordinary material properties and promising application potentials,especially in the energy storage and conversion areas.However,the agglomeration happening in these materials has largely blocked their applications.Hybridization of CNT with graphene can,on one hand,prevent the agglomeration behavior,on the other hand,generate a synergistic effect between them with enhanced physical and chemical properties.There have been many studies conducted to find out the suitable approaches to synthesize graphene/CNT composites,and realize the application potentials of these structures.Based on the recent advances,this paper reviews the current research progress that has been achieved in synthesizing graphene/CNT composites,and the energy-related applications.Through this review,we aim at stimulating more significant research on this subject.
基金supported by the National Natural Science Foundation of China(NO.51766012)Inner Mongolia Financial Innovation Funding Project in 2017+1 种基金Inner Mongolia Natural Science Foundation of China(NO.2019MS05025)the Inner Mongolia Science and Technology Major Project of China(NO.201905)。
文摘Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.