期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Carbon Nanotubes by Electrophoretic Deposition on Interlaminar Properties of Two Dimensional Carbon/carbon Composites
1
作者 黎云玉 GUO Lingjun +2 位作者 LI Hejun MA Haili 宋强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期994-1000,共7页
Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabrica... Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabricate two-dimensional(2 D) carbon/carbon(C/C) composites. Effects of EPD CNTs on interlaminar shear performance and mode Ⅱ interlaminar fracture toughness(GⅡc) of 2 D C/C composites were investigated. Results showed that EPD CNTs were uniformly covered on carbon fibers, acting as a porous coating. Such a CNT coating can obviously enhance the interlaminar shear strength and GⅡc of 2 D C/C composites. With increaing EPD CNTs, the interlaminar shear strength and GⅡc of 2 D C/C composites increase greatly and then decrease, both of which run up to their maximum values, i e, 13.6 MPa and 436.0 J·m-2, when the content of EPD CNTs is 0.54 wt%, 2.27 and 1.45 times of the baseline. Such improvements in interlaminar performance of 2 D C/C composites are mainly beneficial from their increased cohesion of interlaminar matrix, which is caused not only by the direct reinforcing effect of EPD CNT network but also by the capacity of EPD CNTs to refine pyrocarbon matrix and induce multilayered microstructures that greatly increase the crack propagation resistance through "crack-blocking and-deflecting mechanisms". 展开更多
关键词 electrophoretic deposition carbon nanotube C/C composite interlaminar performance reinforcing mechanism
下载PDF
Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets 被引量:2
2
作者 A.AMIRI M.MOHAMMADIMEHR M.ANVARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1027-1038,共12页
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she... In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae. 展开更多
关键词 stress and buckling analysis thick-walled micro cylindrical sandwich panel flexible foam core carbon nanotube reinforced composite(CNTRC)face sheet high-order shear deformation theory(HSDT)
下载PDF
Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature 被引量:1
3
作者 H.V.TUNG L.T.N.TRANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1327-1348,共22页
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. T... The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures. 展开更多
关键词 carbon nanotube reinforced composite(CNTRC) porous functionally graded material(FGM) thermal instability cylindrical shell advanced sandwich model
下载PDF
A Novel Multiscale Reinforcement by In-Situ Growing Carbon Nanotubes on Graphene Oxide Grafted Carbon Fibers and Its Reinforced Carbon/Carbon Composites with Improved Tensile Properties 被引量:8
4
作者 Yunyu Li Ling-jun Guo +2 位作者 Ya-wen Wang He-jun Li Qiang Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期419-424,共6页
In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). ... In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance. 展开更多
关键词 Multiscale reinforcement carbon fiber Graphene oxide carbon nanotube carbon/carbon composite Tensile property
原文传递
An Analytical Approach for Nonlinear Buckling Analysis of Torsionally Loaded Sandwich Carbon Nanotube Reinforced Cylindrical Shells with Auxetic Core
5
作者 Dang Thuy Dong Nguyen Thi Phuong +6 位作者 Vu Hoai Nam Le Ngoc Ly Nguyen Van Tien Vu Minh Duc Tran Quang Minh Vu Tho Hung Nguyen Thi Huong Giang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期468-484,共17页
The main aim of this paper is to present an analytical approach on the postbuckling for torsionally loaded sandwich carbon nanotube(CNT)reinforced cylindrical shells with the auxetic core.The considered shells consist... The main aim of this paper is to present an analytical approach on the postbuckling for torsionally loaded sandwich carbon nanotube(CNT)reinforced cylindrical shells with the auxetic core.The considered shells consist of three layers,external and internal CNT reinforced layers,and the auxetic lattice core made by isotropic material.The homogenization model for honeycomb auxetic lattice core is utilized,and the equilibrium equations are formulated based on the nonlinear Donnell’s thin shell theory with von Karman geometrical nonlinearities.The three terms of deflection are considered,the Airy’s stress function and Galerkin’s method are utilized,the explicit expression of critical buckling of torsionally loaded shells and load-deflection expression of postbuckling states are achieved.The effects of two carbon nanotube reinforced layers,the auxetic core layer,the volume fraction of carbon nanotube on the torsional buckling behavior are examined and remarked. 展开更多
关键词 Nonlinear postbuckling carbon nanotube reinforced composite cylindrical shell torsion auxetic core
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部