The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme elim...The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.展开更多
This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtig...This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.展开更多
Liquefied petroleum gas (LPG), a cheap industrial material, is used as carbon source to produce carbon nanotube (CNT) arrays on ceramic spherical surface on a large scale in the floating catalyst process. The ceramic ...Liquefied petroleum gas (LPG), a cheap industrial material, is used as carbon source to produce carbon nanotube (CNT) arrays on ceramic spherical surface on a large scale in the floating catalyst process. The ceramic spheres provide huge surface area and good mobility, leading to the mass production of CNT arrays continuously. The arrays obtained from the surface are of good alignment, and the purity is as high as 97.5%. With the decrease of the growth temperature, CNTs in the array form with small-diameter of about 13 nm can be obtained. Therefore, with the industrial fuel as carbon source and the ceramic sphere as substrate, CNT arrays can easily be produced on large scale at low cost.展开更多
The nanocomposite of polypyrrole (PPy) and carboxylated multi-walled carbon nanotubes (MWCNT) was synthesized by in situ chemical oxidative polymerization method using HCl as a dopant and Ammonium persulphate (APS) as...The nanocomposite of polypyrrole (PPy) and carboxylated multi-walled carbon nanotubes (MWCNT) was synthesized by in situ chemical oxidative polymerization method using HCl as a dopant and Ammonium persulphate (APS) as an oxidant. The MWCNTs were carboxylic functionalized and were ultrasonicated to obtain uniform dispersion within the PPy matrix. Surface morphology of nanocomposites was investigated by Field Emission Scanning Electron microscopy (FE-SEM) and revealed that the functionalized MWCNTs were well embedded. X-Ray diffraction (XRD), Fourier Transform Infrared (FT-IR) Spectroscopy, Raman spectroscopy and UV-Vis spectroscopy were used to characterize the synthesized PPy-MWCNT nanocomposite. It was found that in situ polymerized PPy layer matrix was formed on carboxylated MWCNT and there was uniform dispersion of MWCNTs within the PPy matrix with significant interaction between PPy and MWCNTs. The response of the prepared PPy-MWCNT nanocomposite sensors was studied in the form of sensitivity towards Ammonia gas (NH3). The synergistic effects of the PPy-coated MWCNTs improve the gas sensing properties. Results showed that the sensitivity increased with NH3 concentration and it was also affected by the MWCNT content in PPy matrix. Furthermore, the sensor in pellet form reported here is robust, cost effective and relatively stable at room temperature.展开更多
文摘The present article reports the application of zinc ethyl silicate paint and the use of internal and external paint schemes on carbon steel spheres for the storage of liquefied petroleum gas. The new paint scheme eliminates the steps of blasting in the field and minimizes the collection of waste generated and the environmental impact, reducing the service time onsite and therefore providing a productivity gain and better health and cleanliness at work. The results were obtained through test runs and qualified in bodies-of-proof made with the same characteristics as the sphere, that is, using the same material (carbon steel), thickness, and mechanical formation and subject to the same conditions of design and implementation process. The paint scheme was approved, qualified, and committed to the supplier’s warranty with the paint manufacturer and assembler of the storage spheres for liquefied petroleum gas.
文摘This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.
基金Supported by the Foundation for the Authors of National Excellent Doctoral Disser-tations of China (Grant No. 200548)the National Natural Science Foundation of China (Grant No. 20606020)+1 种基金the National Basic Research Program of China (Grant No. 2006CB0N0702)the Key Project of the Ministry of Education of China (Grant No. 106011)
文摘Liquefied petroleum gas (LPG), a cheap industrial material, is used as carbon source to produce carbon nanotube (CNT) arrays on ceramic spherical surface on a large scale in the floating catalyst process. The ceramic spheres provide huge surface area and good mobility, leading to the mass production of CNT arrays continuously. The arrays obtained from the surface are of good alignment, and the purity is as high as 97.5%. With the decrease of the growth temperature, CNTs in the array form with small-diameter of about 13 nm can be obtained. Therefore, with the industrial fuel as carbon source and the ceramic sphere as substrate, CNT arrays can easily be produced on large scale at low cost.
文摘The nanocomposite of polypyrrole (PPy) and carboxylated multi-walled carbon nanotubes (MWCNT) was synthesized by in situ chemical oxidative polymerization method using HCl as a dopant and Ammonium persulphate (APS) as an oxidant. The MWCNTs were carboxylic functionalized and were ultrasonicated to obtain uniform dispersion within the PPy matrix. Surface morphology of nanocomposites was investigated by Field Emission Scanning Electron microscopy (FE-SEM) and revealed that the functionalized MWCNTs were well embedded. X-Ray diffraction (XRD), Fourier Transform Infrared (FT-IR) Spectroscopy, Raman spectroscopy and UV-Vis spectroscopy were used to characterize the synthesized PPy-MWCNT nanocomposite. It was found that in situ polymerized PPy layer matrix was formed on carboxylated MWCNT and there was uniform dispersion of MWCNTs within the PPy matrix with significant interaction between PPy and MWCNTs. The response of the prepared PPy-MWCNT nanocomposite sensors was studied in the form of sensitivity towards Ammonia gas (NH3). The synergistic effects of the PPy-coated MWCNTs improve the gas sensing properties. Results showed that the sensitivity increased with NH3 concentration and it was also affected by the MWCNT content in PPy matrix. Furthermore, the sensor in pellet form reported here is robust, cost effective and relatively stable at room temperature.