Sonication is a powerful technique to promote the dispersion of carbon nanotubes(CNTs) and enhance their solubility;this is necessary for CNT applications,especially in the biochemical and biomedical fields.In this st...Sonication is a powerful technique to promote the dispersion of carbon nanotubes(CNTs) and enhance their solubility;this is necessary for CNT applications,especially in the biochemical and biomedical fields.In this study,batch experiments were conducted to evaluate the role of sonication energy on the dispersion of CNTs in the presence of a widely used anionic surfactant,sodium dodecylbenzene sulfonate(SDBS).It was observed that the concentration of dispersed CNTs in the SDBS solution depended on the sonication energy,but not the sonication time or output power of the sonicator alone.The amount of dispersed CNTs was positively correlated with the concentrations of SDBS and CNTs,and the length of the CNTs.The promotion of oxygen-containing functional groups on the dispersed CNTs was observed at relatively low sonication energies.The optimal energy,i.e.the minimum energy supplied by sonication to achieve a saturated suspension of dispersed CNTs in the SDBS solution,was CNT diameter-dependent,because of the larger vdW forces between tubes of smaller diameter.An exponential decay curve was constructed for the optimal energy values as a function of the outer CNT diameter,to assist in determining the energy needed to disperse CNTs.展开更多
Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNT...Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNTs were homogenously dispersed in water using a zwitterionic (ZW) surfactant. Then CZA and CZ powders were submersed in the ZW-CNTsuspensions with varying amounts of dwell time in an ultrasonic bath. The ZW-CNT- metal powder suspensions were dried, and CNT-metal composite powders were obtained after decomposition of the surfactant by calcination. Zeta potential measurements on ZW-CNT-metal powder suspensions and scanning electron microscopy investigation into the CNT-metal composite powders both indicated an ideal dwell time, for a specific alloy composition, of metallic powders in ZW-CNT suspension to achieve optimal adhesion of CNTs onto amorphous metallic powder surfaces. The results are rationalized on the basis of hydrolysis of metal ions into suspension creating a net positive charge on the metallic powder surfaces, and the interaction between the charged powder surfaces and the charged hydrophilic head groups of ZW, which has the other end attached to CNTs.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China (R5110004)the National Natural Science Foundation of China (21137003 and 40973065)+3 种基金the National Science & Technology Pillar Program of China (2013BAC01B01)the Scholarship Award for Excellent Doctoral Student Granted by Ministry of Educationthe Fundamental Research Funds for the Central Universitiesthe Key Innovation Team for Science and Technology of Zhejiang Province (2009R50047)
文摘Sonication is a powerful technique to promote the dispersion of carbon nanotubes(CNTs) and enhance their solubility;this is necessary for CNT applications,especially in the biochemical and biomedical fields.In this study,batch experiments were conducted to evaluate the role of sonication energy on the dispersion of CNTs in the presence of a widely used anionic surfactant,sodium dodecylbenzene sulfonate(SDBS).It was observed that the concentration of dispersed CNTs in the SDBS solution depended on the sonication energy,but not the sonication time or output power of the sonicator alone.The amount of dispersed CNTs was positively correlated with the concentrations of SDBS and CNTs,and the length of the CNTs.The promotion of oxygen-containing functional groups on the dispersed CNTs was observed at relatively low sonication energies.The optimal energy,i.e.the minimum energy supplied by sonication to achieve a saturated suspension of dispersed CNTs in the SDBS solution,was CNT diameter-dependent,because of the larger vdW forces between tubes of smaller diameter.An exponential decay curve was constructed for the optimal energy values as a function of the outer CNT diameter,to assist in determining the energy needed to disperse CNTs.
基金supported by the Materials Design Institute(program manager Dr.Dan Thoma)funded by the LANL/UC Davis Education Research Collaboration,Los Alamos National Laboratory(LANS Subcontract No.75782-001-09)the UC Lab Fees Research Programe Contingency Funds
文摘Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNTs were homogenously dispersed in water using a zwitterionic (ZW) surfactant. Then CZA and CZ powders were submersed in the ZW-CNTsuspensions with varying amounts of dwell time in an ultrasonic bath. The ZW-CNT- metal powder suspensions were dried, and CNT-metal composite powders were obtained after decomposition of the surfactant by calcination. Zeta potential measurements on ZW-CNT-metal powder suspensions and scanning electron microscopy investigation into the CNT-metal composite powders both indicated an ideal dwell time, for a specific alloy composition, of metallic powders in ZW-CNT suspension to achieve optimal adhesion of CNTs onto amorphous metallic powder surfaces. The results are rationalized on the basis of hydrolysis of metal ions into suspension creating a net positive charge on the metallic powder surfaces, and the interaction between the charged powder surfaces and the charged hydrophilic head groups of ZW, which has the other end attached to CNTs.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.