Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analysed to predict the spatial soil organic carbon (SOC) content using multivariate...Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analysed to predict the spatial soil organic carbon (SOC) content using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyperspectral image, field and laboratory scale data sets (350 - 2500 nm) were generated which consisted of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflectance data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and all three datasets (image-scale, field-scale and lab-scale) revealed significant network performances for training, testing and validation indicating a good network generalization for SOC content. ANN based analysis showed high prediction of SOC content at image (R2 = 0.93, and RPD = 3.19), field (R2 = 0.92 and RPD = 3.17), and lab scale (R2 = 0.95 and RPD = 3.16). Validation results of ANN indicated that predictive models performed well (R2 = 0.90) with RMSE 0.070. The result showed that ANN methods had a great potential for estimating and mapping spatial SOC content. The study concluded that ANN model was potential tools in predicting SOC distribution in agricultural field using hyper-spectral remote sensing data at image-scale, field-scale and lab-scale.展开更多
The solubility data of compounds in supercritical fluids and the correlation between the experimental solubility data and predicted solubility data are crucial to the development of supercritical technologies. In the ...The solubility data of compounds in supercritical fluids and the correlation between the experimental solubility data and predicted solubility data are crucial to the development of supercritical technologies. In the present work, the solubility data of silymarin(SM) in both pure supercritical carbon dioxide(SCCO2) and SCCO2 with added cosolvent was measured at temperatures ranging from 308 to 338 K and pressures from 8 to 22 MPa. The experimental data were fit with three semi-empirical density-based models(Chrastil, Bartle and Mendez-Santiago and Teja models) and a back-propagation artificial neural networks(BPANN) model. Interaction parameters for the models were obtained and the percentage of average absolute relative deviation(AARD%) in each calculation was determined. The correlation results were in good agreement with the experimental data. A comparison among the four models revealed that the experimental solubility data were more fit with the BPANN model with AARDs ranging from 1.14% to 2.15% for silymarin in pure SCCO2 and with added cosolvent. The results provide fundamental data for designing the extraction of SM or the preparation of its particle using SCCO2 techniques.展开更多
Climate Pollution due to the Carbon Emission (CO2) from the different fossil fuels is considered as a great and important international challenge to many researchers. In this paper we are providing a solution to forec...Climate Pollution due to the Carbon Emission (CO2) from the different fossil fuels is considered as a great and important international challenge to many researchers. In this paper we are providing a solution to forecast the poison CO2 gas emerged from energy consumption. Four inputs data were considered the global oil, natural gas, coal, and primary energy consumption to build our system. In this paper, we used the Artificial Neural Network (ANN) as successful and powerful tool in handling a time series modeling problem. The proposed ANN model was used to train and test the yearly CO2 Emission. The data were trained from year 1982 to 2000, and tested for the year 2003 to 2010. From the results obtained we can see that ANN performance was Excellent and proved its efficiency as a useful tool in solving the climate pollution problems.展开更多
设备资产运维精益管理系统(power production management system,PMS)SF6气体量数据不全且误差较大,无法为电网企业核算碳储量以及实现待建变电站碳规划提供基础数据。针对上述情况,研究了计及母线和断路器的变电站碳储量核算方法,并结...设备资产运维精益管理系统(power production management system,PMS)SF6气体量数据不全且误差较大,无法为电网企业核算碳储量以及实现待建变电站碳规划提供基础数据。针对上述情况,研究了计及母线和断路器的变电站碳储量核算方法,并结合宁夏电网现场实测数据,通过MIC法筛选神经网络输入参数,构建了6输入参数的GA-BP、PSO-BP、HPO-BP神经网络模型,结果表明HPO-BP神经网络模型的评估指标及预估结果相对误差(6.28%)均优于其余2种神经网络模型,可以准确核算断路器SF6气体量。针对参数不确定情况,根据PCCs法分析不同参数之间的线性关系,构建了3输入参数的HPO-BP神经网络模型,预估结果相对误差为9.72%。通过遍历输出方式,在参数不确定情况下输出多组断路器SF6气体量预估数据,利用求和累积方法获取变电站总SF6气体量,并量化为变电站碳储量,从而为电网企业实现“双碳”目标提供数据支撑。展开更多
有机碳含量是评价烃源岩潜力的主要参数,常用的总有机碳含量(TOC)测井反演模型难以深度剖析测井曲线之间的复杂共线性关系,制约了多维测井信息的综合评价效果。利用玛湖凹陷三叠系白碱滩组泥岩的热解实验结果和常规测井曲线资料,建立了...有机碳含量是评价烃源岩潜力的主要参数,常用的总有机碳含量(TOC)测井反演模型难以深度剖析测井曲线之间的复杂共线性关系,制约了多维测井信息的综合评价效果。利用玛湖凹陷三叠系白碱滩组泥岩的热解实验结果和常规测井曲线资料,建立了一种基于PCA-BP(Principal Component Analysis and Back Propagation)神经网络的有机碳含量智能预测方法。该方法以敏感测井曲线的加权平均值和TOC测试结果为原始数据集,首先利用方差膨胀因子检测测井曲线之间共线性,然后采用主成分分析PCA(Principal Component Analysis)技术对原始数据集进行去共线性和降维处理,确定出2个主成分,最后结合中子、自然伽马、密度、声波时差曲线值,建立出6个输入节点的3层BP(Back Propagation)神经网络预测模型,对研究区三叠系白碱滩组烃源岩潜力进行精细评价。3口取心井累积410m井段的预测结果表明,模型的决定系数高达0.879,预测结果平均绝对误差和均方误差分别为0.220和0.107,平均相对误差为16.1%。研究结果为准噶尔盆地勘探领域优选提供了可靠参考。展开更多
文摘Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analysed to predict the spatial soil organic carbon (SOC) content using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyperspectral image, field and laboratory scale data sets (350 - 2500 nm) were generated which consisted of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflectance data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and all three datasets (image-scale, field-scale and lab-scale) revealed significant network performances for training, testing and validation indicating a good network generalization for SOC content. ANN based analysis showed high prediction of SOC content at image (R2 = 0.93, and RPD = 3.19), field (R2 = 0.92 and RPD = 3.17), and lab scale (R2 = 0.95 and RPD = 3.16). Validation results of ANN indicated that predictive models performed well (R2 = 0.90) with RMSE 0.070. The result showed that ANN methods had a great potential for estimating and mapping spatial SOC content. The study concluded that ANN model was potential tools in predicting SOC distribution in agricultural field using hyper-spectral remote sensing data at image-scale, field-scale and lab-scale.
基金supported financially by the Subject Chief Scientist Program (10XD14303900) from Science and Technology Commission of Shanghai Municipalitythe Special Research Fund for the Doctoral Program of Higher Education of China (20123107110005)
文摘The solubility data of compounds in supercritical fluids and the correlation between the experimental solubility data and predicted solubility data are crucial to the development of supercritical technologies. In the present work, the solubility data of silymarin(SM) in both pure supercritical carbon dioxide(SCCO2) and SCCO2 with added cosolvent was measured at temperatures ranging from 308 to 338 K and pressures from 8 to 22 MPa. The experimental data were fit with three semi-empirical density-based models(Chrastil, Bartle and Mendez-Santiago and Teja models) and a back-propagation artificial neural networks(BPANN) model. Interaction parameters for the models were obtained and the percentage of average absolute relative deviation(AARD%) in each calculation was determined. The correlation results were in good agreement with the experimental data. A comparison among the four models revealed that the experimental solubility data were more fit with the BPANN model with AARDs ranging from 1.14% to 2.15% for silymarin in pure SCCO2 and with added cosolvent. The results provide fundamental data for designing the extraction of SM or the preparation of its particle using SCCO2 techniques.
文摘Climate Pollution due to the Carbon Emission (CO2) from the different fossil fuels is considered as a great and important international challenge to many researchers. In this paper we are providing a solution to forecast the poison CO2 gas emerged from energy consumption. Four inputs data were considered the global oil, natural gas, coal, and primary energy consumption to build our system. In this paper, we used the Artificial Neural Network (ANN) as successful and powerful tool in handling a time series modeling problem. The proposed ANN model was used to train and test the yearly CO2 Emission. The data were trained from year 1982 to 2000, and tested for the year 2003 to 2010. From the results obtained we can see that ANN performance was Excellent and proved its efficiency as a useful tool in solving the climate pollution problems.
文摘设备资产运维精益管理系统(power production management system,PMS)SF6气体量数据不全且误差较大,无法为电网企业核算碳储量以及实现待建变电站碳规划提供基础数据。针对上述情况,研究了计及母线和断路器的变电站碳储量核算方法,并结合宁夏电网现场实测数据,通过MIC法筛选神经网络输入参数,构建了6输入参数的GA-BP、PSO-BP、HPO-BP神经网络模型,结果表明HPO-BP神经网络模型的评估指标及预估结果相对误差(6.28%)均优于其余2种神经网络模型,可以准确核算断路器SF6气体量。针对参数不确定情况,根据PCCs法分析不同参数之间的线性关系,构建了3输入参数的HPO-BP神经网络模型,预估结果相对误差为9.72%。通过遍历输出方式,在参数不确定情况下输出多组断路器SF6气体量预估数据,利用求和累积方法获取变电站总SF6气体量,并量化为变电站碳储量,从而为电网企业实现“双碳”目标提供数据支撑。
文摘有机碳含量是评价烃源岩潜力的主要参数,常用的总有机碳含量(TOC)测井反演模型难以深度剖析测井曲线之间的复杂共线性关系,制约了多维测井信息的综合评价效果。利用玛湖凹陷三叠系白碱滩组泥岩的热解实验结果和常规测井曲线资料,建立了一种基于PCA-BP(Principal Component Analysis and Back Propagation)神经网络的有机碳含量智能预测方法。该方法以敏感测井曲线的加权平均值和TOC测试结果为原始数据集,首先利用方差膨胀因子检测测井曲线之间共线性,然后采用主成分分析PCA(Principal Component Analysis)技术对原始数据集进行去共线性和降维处理,确定出2个主成分,最后结合中子、自然伽马、密度、声波时差曲线值,建立出6个输入节点的3层BP(Back Propagation)神经网络预测模型,对研究区三叠系白碱滩组烃源岩潜力进行精细评价。3口取心井累积410m井段的预测结果表明,模型的决定系数高达0.879,预测结果平均绝对误差和均方误差分别为0.220和0.107,平均相对误差为16.1%。研究结果为准噶尔盆地勘探领域优选提供了可靠参考。