期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode 被引量:3
1
作者 Chenyang Zhao Xiaoju Yin +6 位作者 Zhikun Guo Dan Zhao Guiye Yang Aosai Chen Lishuang Fan Yu Zhang Naiqing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第7期2254-2258,共5页
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of&q... Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of"dead lithium"are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS)as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9%over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_(4)(LFP)as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4%after 100 cycles at 0.5 C. 展开更多
关键词 Lithium metal batteries nitrogen doped carbon nanotubes Stainless steel mesh COMSOL multi-physics concentration field Simulation Lithiophilic anode
原文传递
Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials 被引量:3
2
作者 Hao Liu Yong Zhang +2 位作者 Ruying Li Xueliang Sun Hakima Abou-Rachid 《Particuology》 SCIE EI CAS CSCD 2011年第5期465-470,共6页
Well aligned nitrogen-doped carbon nanotubes (CNx-NTs), as energetic materials, are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition, Tungsten (W) and molybdenum (Mo) metals are r... Well aligned nitrogen-doped carbon nanotubes (CNx-NTs), as energetic materials, are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition, Tungsten (W) and molybdenum (Mo) metals are respectively introduced to combine with iron (Fe) to act as a bimetallic co-catalyst layer. Cor- relations between the composition and shape of the co-catalyst and morphology, size, growth rate and nitrogen doping amount of the synthesized CNx-NTs are investigated by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrometer (XPS). Compared to pure iron catalyst, W-Fe co-catalyst can result in lower growth rate, larger diameter and wider size distribution of the CNx-NTs; while incorporation of molybdenum into the iron catalyst layer can reduce the diameter and size distribution of the nanotubes. Compared to the sole iron catalyst, Fe-W catalyst impedes nitrogen doping while Fe-Mo catalyst promotes the incorporation of nitrogen into the nanotubes. The present work indicates that CNx-NTs with modulated size, growth rate and nitrogen doping concentration are expected to be synthesized by tuning the size and composition of co-catalysts, which may find great potential in producing CNx-NTs with controlled structure and properties, 展开更多
关键词 nitrogen doped carbon nanotubes Chemical vapor deposition Bimetallic catalyst
原文传递
Reinforcing epoxy resin with nitrogen doped carbon nanotube:A potential lightweight structure material
3
作者 Qi Wang Guodong Wen +1 位作者 Junnan Chen Dang Sheng Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第11期2205-2211,共7页
The outstanding mechanical properties of nanocarbon materials, especially carbon nanotube(CNT), make them one of the most promising reinforcing nanofillers for the high-performance lightweight structural material. H... The outstanding mechanical properties of nanocarbon materials, especially carbon nanotube(CNT), make them one of the most promising reinforcing nanofillers for the high-performance lightweight structural material. However, the complicated but not eco-friendly surface functionalization processes(e.g. HNO3 oxidation) are generally necessary to help disperse nanocarbon materials into epoxy or build chemical bonds between them. Herein, nitrogen doped carbon nanotube(NCNT) was used to replace CNT to reinforce the epoxy resin, and the mechanical properties of the NCNT/epoxy nanocomposite showed significant superiorities over the CNT/epoxy nanocomposites. The fabrication process was simple and environmentally friendly, and avoided complicated, polluting and energy intensive surface functionalization processes. Moreover, the NCNT/epoxy suspension exhibited a relative low viscosity, which was favorable for the subsequent application. The reinforcing mechanism of NCNT was also proposed. The present work gives out an easy solution to the preparation of a high-performance nanocomposite as a potential lightweight structure material. 展开更多
关键词 Epoxy-matric nanocomposite nitrogen doped carbon nanotube NCNT/epoxy Mechanical properties TOUGHNESS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部