期刊文献+
共找到799篇文章
< 1 2 40 >
每页显示 20 50 100
Soil Carbon Pool Management Index under Different Straw Retention Regimes 被引量:5
1
作者 曾研华 吴建富 +4 位作者 何虎 潘晓华 石庆华 吴自明 邓伟明 《Agricultural Science & Technology》 CAS 2012年第4期818-822,共5页
[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), a... [Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields. 展开更多
关键词 Double-cropping paddy field Different straw retention regimes Total or- ganic carbon Active carbon Mineralized carbon carbon pool management index
下载PDF
Carbon pool structure and carbon density of soil in Pinus koraiensis plantation ecosystem 被引量:4
2
作者 丁壮 张彦东 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期177-182,I0005,共7页
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s... The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability. 展开更多
关键词 soil carbon pool soil carbon density soil carbon content Pinus koraiensis plantation ecosystem mixed forest
下载PDF
Soil carbon pools of six ecological regions of the United States 被引量:3
3
作者 Amitava Chatterjee 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1933-1938,共6页
Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for p... Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for predicting change over time.Surface soil samples from six ecoregions of the United States were analyzed for permanganate oxidizable C(KMnO4-C)and mineralizable C pools.Variations of SOC ranged from 7.9 mg g^-1(Florida site)to 325 mg g^-1(Hawaii site).Mineralisable C pools and KMnO4-C were highest in soils from the Hawaii site.Mean annual precipitation explains SOC and resistant C pool variations.Clay content was related to mineralisable active C pools and bacterial abundance.Mean annual precipitation and clay content are potential variables for predicting changes in SOC pools at large spatial scales. 展开更多
关键词 Permanganate oxidizable carbon(KMnO4-C) Resistant carbon pool Mean residence time Soil carbon pools United States
下载PDF
Soil carbon pool in China and its global significance 被引量:47
4
作者 Fang Jingyun, Liu Guohua, Xu Songling(Research Center for Eco-Environmental Science, ChineseAcademy of Sciences, Beijing 100085, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1996年第2期249-254,共6页
Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted ave... Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle. 展开更多
关键词 China global climate change soil carbon content soil carbon pool soil type.
下载PDF
Natural forests in New Zealand–a large terrestrial carbon pool in a national state of equilibrium 被引量:2
5
作者 Thomas Paul Mark O.Kimberley Peter N.Beets 《Forest Ecosystems》 SCIE CSCD 2021年第3期458-478,共21页
Background:Natural forests cover approximately 29%of New Zealand’s landmass and represent a large terrestrial carbon pool.In 2002 New Zealand implemented its first representative plot-based natural forest inventory t... Background:Natural forests cover approximately 29%of New Zealand’s landmass and represent a large terrestrial carbon pool.In 2002 New Zealand implemented its first representative plot-based natural forest inventory to assess carbon stocks and stock changes in these mostly undisturbed old-growth forests.Although previous studies have provided estimates of biomass or carbon stocks,these were either not fully representative or lacked data from important pools such as dead wood(coarse woody debris).The current analysis provides the most complete estimates of carbon stocks and stock changes in natural forests in New Zealand.Results:We present estimates of per hectare carbon stocks and stock changes in live and dead organic matter pools excluding soil carbon based on the first two measurement cycles of the New Zealand Natural Forest Inventory carried out from 2002 to 2014.These show that New Zealand’s natural forests are in balance and are neither a carbon source nor a carbon sink.The average total carbon stock was 227.0±14.4 tC·ha^(−1)(95%C.I.)and did not change significantly in the 7.7 years between measurements with the net annual change estimated to be 0.03±0.18 tC·ha^(−1)·yr^(−1).There was a wide variation in carbon stocks between forest groups.Regenerating forest had an averaged carbon stock of only 53.6±9.4 tC·ha^(−1) but had a significant sequestration rate of 0.63±0.25 tC·ha^(−1)·yr^(−1),while tall forest had an average carbon stock of 252.4±15.5 tC·ha^(−1),but its sequestration rate did not differ significantly from zero(−0.06±0.20 tC·ha^(−1)·yr^(−1)).The forest alliance with the largest average carbon stock in above and below ground live and dead organic matter pools was silver beech-red beech-kamahi forest carrying 360.5±34.6 tC·ha^(−1).Dead wood and litter comprised 27%of the total carbon stock.Conclusions:New Zealand’s Natural Forest Inventory provides estimates of carbon stocks including estimates for difficult to measure pools such as dead wood and roots.It also provides estimates of uncertainties including effects of model prediction error and sampling variation between plots.Importantly it shows that on a national level New Zealand’s natural forests are in balance.Nevertheless,this is a nationally important carbon pool that requires continuous monitoring to identify potential negative or positive changes. 展开更多
关键词 Forest inventory Natural forests carbon stocks and change Terrestrial carbon pool
下载PDF
Biochar Serves as a Long-term Soil Carbon Pool 被引量:1
6
作者 Lena Q.Ma 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期231-232,共2页
Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is... Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract 展开更多
关键词 BIOCHAR soil carbon pool carbon-based GREENHOUSE GASES
下载PDF
Effects of Nitrogen Application Rate to Late Rice on Greenhouse Gas Emissions and Soil Carbon Pool During the Growing Season of Winter Chinese Milk vetch
7
作者 Yanqin MA Guoqin HUANG 《Agricultural Biotechnology》 CAS 2018年第6期139-145,共7页
It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertil... It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertilization on the greenhouse gas emissions and soil carbon pool during the growing season of winter Chinese milk vetch in the process of rice cultivation.This study investigated the effects of nitrogen application in late rice season on the yield of the succeeding Chinese milk vetch and greenhouse gas emissions as well as the soil carbon pool characteristics after the winter planting of Chinese milk vetch with the winter idling of no nitrogen application as the control.The results showed that the yield of Chinese milk vetch was the highest under the nitrogen application of 225 kg/hm^2 in the late rice season,reaching up to 18 388.97 kg/hm^2,which was significantly different from other treatments( P <0.05).Nitrogen application in late rice season increased the emissions of N_2 O,CH_4,CO_2 and global warming potential( GWP) in the growing season of Chinese milk vetch.Compared with the winter idling treatment,winter planting of Chinese milk vetch significantly increased the soil organic carbon and soil carbon pool management index.The yield of Chinese milk vetch was significantly positively correlated with N_2O and CH_4 emissions( P < 0.05),while it presented extremely significant positive correlations with CO_2 emissions,GWP,active organic carbon,and carbon pool management index( P < 0.01).Nitrogen application in the late rice season increased the emissions of N_2 O,CH_4,CO_2,and enhanced the greenhouse gas emission potential during the growing season of Chinese milk vetch.Therefore,without reducing the yield of rice,reducing the amount of nitrogen fertilizer in rice could reduce the greenhouse gas emissions in the growing season of succeeding Chinese milk vetch. 展开更多
关键词 Nitrogen application CHINESE MILK VETCH GREENHOUSE gas emission Soil carbon pool
下载PDF
The below-ground biomass contributes more to wetland soil carbon pools than the above-ground biomass-a survey based on global wetlands 被引量:1
8
作者 Yueyan Pan Jiakai Liu +6 位作者 Mingxiang Zhang Peisheng Huang Matt Hipesy Liyi Dai Ziwen Ma Fan Zhang Zhenming Zhang 《Journal of Plant Ecology》 SCIE CSCD 2024年第5期17-28,共12页
The biomass of wetland plants is highly responsive to environmental factors and plays a crucial role in the dynamics of the soil organic carbon(SOC)pool.In this study,we collected and analyzed global data on wetland p... The biomass of wetland plants is highly responsive to environmental factors and plays a crucial role in the dynamics of the soil organic carbon(SOC)pool.In this study,we collected and analyzed global data on wetland plant biomass from 1980 to 2021.By examining 1134 observations from 182 published papers on wetland ecosystems,we created a comprehensive database of wetland plant above-ground biomass(AGB)and below-ground biomass(BGB).Using this database,we analyzed the biomass characteristics of different climate zones,wetland types and plant species globally.Based on this,we analyzed the differences between the biomass of different plant species and the linkage between AGB and BGB and organic carbon.Our study has revealed that wetland plant AGB is greater in equatorial regions but BGB is highest in polar areas,and lowest in arid and equatorial zones.For plant species,the BGB of the Poales is higher than the AGB but Caryophyllales,Cyperales and Lamiales have higher AGB.Moreover,our findings indicate that BGB plays a more significant role in contributing to the organic carbon pool compared to AGB.Notably,when BGB is less than 1 t C ha^(-1),even slight changes in biomass can have a significant impact on the organic carbon pool.And we observed that the SOC increases by 5.7 t C ha^(-1)when the BGB content is low,indicating that the SOC is more sensitive to changes in biomass under such circumstances.Our study provides a basis for the global response of AGB and BGB of wetland plants to organic carbon. 展开更多
关键词 plant biomass global scale organic carbon pool organic carbon sensitivity WETLAND
原文传递
Carbon pools and fluxes in the China Seas and adjacent oceans 被引量:13
9
作者 Nianzhi JIAO Yantao LIANG +23 位作者 Yongyu ZHANG Jihua LIU Yao ZHANG Rui ZHANG Meixun ZHAO Minhan DAI Weidong ZHAI Kunshan GAO Jinming SONG Dongliang YUAN Chao LI Guanghui LIN Xiaoping HUANG Hongqiang YAN Limin HU Zenghu ZHANG Long WANG Chunjie CAO Yawei LUO Tingwei LUO Nannan WANG Hongyue DANG Dongxiao WANG Si ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第11期1535-1563,共29页
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a vari... The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area. 展开更多
关键词 China Seas "Source" or "sink" of C02 carbon pool carbon flux Biological pump Microbial carbon pump
原文传递
Pool Sizes and Turnover of Soil Organic Carbon of Farmland Soil in Karst Area of Guilin 被引量:3
10
作者 YANG Hui CAO Jianhua +2 位作者 ZHANG Liankai HOU Yanlin MAO Lifeng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2011年第1期39-45,共7页
The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active... The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active pool and its decomposition rate,slow pool and its decomposition rate.The results showed that the size of the active pool from different profiles accounted for 2.09%-3.08% of the total soil organic carbon and the mean residue time was 3.57-17.21 days.And the size of the slow pool accounted for 3.19%-43.55% and the mean residue time was 1.12-4.94 years.Acid hydrolysis(6M HCl) was used to fractionate the passive organic carbon,which accounted for 50.83%-94.44% of the total soil organic carbon. 展开更多
关键词 karst area FARMLAND soil organic carbon pool turnover time
下载PDF
Assessment of above- and belowground carbon pools in a semi-arid forest ecosystem of Delhi, India 被引量:2
11
作者 Archana Meena Ankita Bidalia +2 位作者 M.Hanief JDinakaran K.S.Rao 《Ecological Processes》 SCIE EI 2019年第1期93-103,共11页
Background:Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action plan for management of such ecosystems under global climate change and rapid urbanization.This study,t... Background:Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action plan for management of such ecosystems under global climate change and rapid urbanization.This study,therefore,aims to assess the above-and belowground carbon storage potential of a semi-arid forest ecosystem of Delhi.Methods:For the study,two forest sites were selected,i.e.,north ridge(NRF)and central ridge(CRF).Aboveground tree biomass was estimated by using growing stock volume equations developed by Forest Survey of India and specific wood density.Understory biomass was determined by harvest sampling method.Belowground(root)biomass was determined by using a developed equation.For soil organic carbon(SOC),soil samples were collected at 0–10-cm and 10–20-cm depth and carbon content was estimated.Results:The present study estimated 90.51 Mg ha−1 biomass and 63.49 Mg C ha−1 carbon in the semi-arid forest of Delhi,India.The lower diameter classes showed highest tree density,i.e.,240 and 328 individuals ha−1(11–20 cm),basal area,i.e.,8.7(31–40 cm)and 6.08m2 ha−1(11–20 cm),and biomass,i.e.,24.25 and 23.57 Mg ha−1(11–20 cm)in NRF and CRF,respectively.Furthermore,a significant contribution of biomass(7.8 Mg ha−1)in DBH class 81–90 cm in NRF suggested the importance of mature trees in biomass and carbon storage.The forests were predominantly occupied by Prosopis juliflora(Sw.)DC which also showed the highest contribution to the(approximately 40%)tree biomass.Carbon allocation was maximum in aboveground(40–49%),followed by soil(29.93–37.7%),belowground or root(20–22%),and litter(0.27–0.59%).Conclusion:Our study suggested plant biomass and soils are the potential pools of carbon storage in these forests.Furthermore,carbon storage in tree biomass was found to be mainly influenced by tree density,basal area,and species diversity.Trees belonging to lower DBH classes are the major carbon sinks in these forests.In the study,native trees contributed to the significant amount of carbon stored in their biomass and soils.The estimated data is important in framing forest management plans and strategies aimed at enhancing carbon sequestration potential of semi-arid forest ecosystems of India. 展开更多
关键词 Semi-arid forest carbon pool Forest management Species composition Basal area carbon allocation pattern
原文传递
Forest and Soil Carbon Stocks, Pools and Dynamics and Potential Climate Change Mitigation in Nepal 被引量:1
12
作者 Shrestha Him Lal Roshan M. Bajracharya Bishal K. Sitaula 《Journal of Environmental Science and Engineering(B)》 2012年第6期800-811,共12页
The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate chan... The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate change are not only the rise in global temperatures, but also changes in the precipitation patterns, which could affect agricultural production, food security, human health and long-term ecosystem properties balance. The deforestation and land degradation are major sources of GHG (greenhouse gas) emissions. International negotiations and dialogues on REDD+ mechanism are held for both national and local level mitigation policies formulation for the reduction of carbon emission from land use, land use change and forestry sector. The reduction of emissions from fossil fuel combustion and avoidance of deforestation and forest/land degradation constitute lasting and long-term solutions for mitigating climate change. There is an urgent need of relevant and efficient methods of measuring forest and soil carbon through application of the latest geospatial technologies, i.e., GIS (geographic information system), Remote Sensing and LiDAR (Light Detection and Ranging). These technologies can support the precise measurement of carbon stocks, as well as, offer cost effective and interoperable data generation methods. The REDD+ mechanism is being promoted worldwide mainly to reduce the diminishing of forest in developing countries. Such an approach must consider use rights, sustainable management of forests, ensuring and safe-guarding the benefit sharing mechanism and good governance, along with the legal framework and local livelihood concerns. 展开更多
关键词 carbon pool land use change MITIGATION REDD+
下载PDF
Driving factors of tree biomass and soil carbon pool in xerophytic forests of northeastern Argentina
13
作者 Silvana María JoséSione Marcelo Germán Wilson +3 位作者 Silvia Gabriela Ledesma Emmanuel Adrián Gabioud JoséDaniel Oszust Leandro Javier Rosenberger 《Ecological Processes》 SCIE EI CSCD 2023年第1期916-928,共13页
Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use ch... Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uniand multivariate (redundancy analysis) methods. Results The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50;p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. Conclusions The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects. 展开更多
关键词 carbon pool Forest biomass Soil parameters Ecosystem services
原文传递
Preliminary estimation of the organic carbon pool in China's wetlands 被引量:17
14
作者 ZHENG YaoMin NIU ZhenGuo +2 位作者 GONG Peng DAI YongJiu SHANGGUAN Wei 《Chinese Science Bulletin》 SCIE EI CAS 2013年第6期662-670,共9页
Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organ... Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organic carbon pool in China's wetlands at the national scale.An updated data and inventory approach were used to estimate the amount of organic carbon stored in China's wetlands.Primary results are as follows:(1) the organic carbon pool of China's wetlands is between 5.39 and 7.25 Pg,accounting for 1.3%-3.5% of the global level;(2) the estimated values and percentages of the organic carbon contained in the soil,water and vegetation pools in China's wetlands are 5.04-6.19 Pg and 85.4%-93.5%,0.22-0.56 Pg and 4.1%-7.7%,0.13-0.50 Pg and 2.4%-6.9%,respectively.The soil organic carbon pool of China's wetlands is greater than our previous estimate of 3.67 Pg,but is lower than other previous estimates of 12.20 and 8-10 Pg.Based on the discussion and uncertainty analysis,some research areas worthy of future attention are presented. 展开更多
关键词 土壤有机碳库 湿地资源 中国 估算 不确定性分析 模估计 交流计数 湿地土壤
原文传递
Effects of Land Uses on Soil Organic Carbon and Carbon Pool Management Index
15
作者 Tang Guoyong Li Kun +1 位作者 Sun Yongyu Zhang Chunhua 《Chinese Forestry Science and Technology》 2012年第3期32-32,共1页
Carbon management index(ICM) is used to evaluate the scientificity of soil management.Soil organic carbon(SOC) and readily oxidized carbon (ROC) contents under Leucaena leucocephala stand, Acacia glauca stand,Ac... Carbon management index(ICM) is used to evaluate the scientificity of soil management.Soil organic carbon(SOC) and readily oxidized carbon (ROC) contents under Leucaena leucocephala stand, Acacia glauca stand,Acacia auriculiformis stand, Azadirachta indica stand,wasteland and dry cropland were determined and their ICM were calculated.The results showed that the SOC and ROC contents under the 6 land use types were 4.22-5.92 g·kg<sup>-1</sup> and 1.34-2.33 g·kg<sup>-1</sup>,respectively.No significant differences in SOC contents among these land uses were observed.The ROC contents under the 4 types of woodland,however,were significantly higher than these under dry cropland or wasteland(P【0.05). The ROC were high significantly(P【0.001) correlated(R<sup>2</sup> is 66.3%) with SOC.Compared with wasteland,the ICM ranged from 1.77 to 2.36 under these woodlands,and 0.99 under dry cropland.It is revealed that the litter quantity and land management under these land uses may be the key factors resulting in the variation of ROC.At ecological fragile region of Dry-hot Valley,closure management is useful to sequestrate C in woodland soils.However,the management systems for soil carbon pool under dry cropland are not in a sound way. 展开更多
关键词 Dry-hot VALLEY soil organic carbon readily OXIDIZED carbon carbon pool management index LAND use
原文传递
Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China 被引量:10
16
作者 YANG Li-xia PAN Jian-jun YUAN Shao-feng 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期39-43,共5页
The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils ... The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC. 展开更多
关键词 Soil organic carbon Organic carbon mineralization Double exponential model Active carbon pools Slow carbon pools Mean resistant times (MRTs)
下载PDF
Topsoil organic carbon mineralization and CO_2 evolution of three paddy soils from South China and the temperature dependence 被引量:39
17
作者 ZHANG Xu-hui LI Lian-qing PAN Gen-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期319-326,共8页
Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on th... Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied. 展开更多
关键词 C mineralization carbon pool laboratory incubation paddy soil soil warming
下载PDF
Temporal variation of soil carbon stock and its controlling factors over the last two decades on the southern Song-nen Plain,Heilongjiang Province 被引量:20
18
作者 Xueqi Xia Zhongfang Yang +2 位作者 Yan Liao Yujun Cui Yansheng Li 《Geoscience Frontiers》 SCIE CAS 2010年第1期125-132,共8页
Against the current background of global climate change, the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenh... Against the current background of global climate change, the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas. This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province, using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005-2007, and another soil survey conducted in 1982-1990. The study area is a carbon source of 1479 t/km2 and in the past 20 years, from the 1980s until 2005, the practical carbon emission from the soil was 0.12 Gt. Temperature, which has been found to be linearly correlated to soil organic carbon, is the domi- nant climatologic factor controlling soil organic carbon contents. Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt, the potential soil carbon emission resulting from land-use change was 0.09 Gt, and the combined potential loss of soil carbon (0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion (0.21 Gt). Due to the time delay in soil carbon pool variation, there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future. 展开更多
关键词 The southern Song-nen Plain in Heilongjiang Province Soil carbon pool Spatial and temporal variation carbon cycle
下载PDF
Estimation of above-ground biomass and carbon stock of an invasive woody shrub in the subtropical deciduous forests of Doon Valley,western Himalaya,India 被引量:8
19
作者 Gautam Mandal S.P.Joshi 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期291-305,共15页
This study describes the different parameters used to derive the allometric equation for calculating the biomass of an invasive woody shrub Lantana camara L.from the subtropical conditions of western Himalaya.It ident... This study describes the different parameters used to derive the allometric equation for calculating the biomass of an invasive woody shrub Lantana camara L.from the subtropical conditions of western Himalaya.It identifies the most accurate and convenient method for biomass calculation by comparing destructive with nondestructive methodology.Different parameters were measured on a wide range of Lantana from different community levels for the non-destructive calculation of total aboveground biomass.Different explanatory variables were identified and measured such as basal diameter either as a single independent variable or in combination with plant height.The other suitable combinations of available independent variables include crown length,crown width,crown area,crown volume and coverage of the plant.Amongst the wide range of allometric equations used with different variables,the equation with D2 H as a variable was found to be the most suitable estimator of biomass calculation for Lantana.Sahastradhara,being the most disturbed area due to its high tourist activity round the year,showed maximum coverage(58.57 % ha-1),highest biomass(13,559.60 kg ha-1) and carbon density(6,373.01 kg ha-1)of Lantana.The degree of Lantana’s invasiveness in subtropical conditions was also calculated on the basis of importance value index(IVI).The maximum IVI(22.77)and mean coverage(26.8 % ha-1) was obtained from the areas near Jolly Grant airport,indicating that physically disturbed areas are more suitable for the growth of Lantana,which may significantly increase shrub biomass.The importance of incorporating allometric equations in calculation of shrub biomass,and its role in atmospheric carbon assimilation has thus been highlighted through the findings of this study. 展开更多
关键词 Above ground carbon pools Allometric regression equations carbon density Importance value index(IVI) Shrub biomass
下载PDF
Carbon dioxide release due to change in land use in China mainland 被引量:10
20
作者 Wang Xiaoke Zhuang Yahui Feng Zongwei(Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1994年第3期287-295,共9页
The carbon pool and emission of carbon dioxide from terrestrial ecosystems in Chinahave been estimated. The carbon pool is 2.51×10 ̄9-25.2×10 ̄9 ton C in vegetation, and 49. 7×10 ̄9ton C in soil. The c... The carbon pool and emission of carbon dioxide from terrestrial ecosystems in Chinahave been estimated. The carbon pool is 2.51×10 ̄9-25.2×10 ̄9 ton C in vegetation, and 49. 7×10 ̄9ton C in soil. The carbon dioxide release from terrestrial ecosystems is 0.0317× 10 ̄9- 0. 195× 10 ̄9ton C due to changes in land-use in recent years, mainly caused by deforestation and degradation ofgrassland. This carbon release due to changes in land-use is approximately 17% of the current carbondioxide emission from fossil fuel combustion and cement production in China. As compared withthe global carbon pool, the carbon pool in vegetation and in soil in China are 1.8% and 3.3% ofthe global figures, respectively. 展开更多
关键词 carbon pool carbon dioxide release terrestrial ecosystems.
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部