期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film 被引量:2
1
作者 闫久春 王晓林 +2 位作者 秦明 赵新英 杨士勤 《China Welding》 EI CAS 2004年第1期71-75,共5页
Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding tim... Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3 MPa to 0.5 MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested. 展开更多
关键词 resistance welding carbon fiber reinforced polyetheretherketone composite welding parameter FRACTURE
下载PDF
Orthogonal design of experiment and analysis of abrasive water jet cutting on carbon fiber reinforced composites
2
作者 HE Binjie DAI Jinchun +3 位作者 ZHAO Deng HUANG Nuodi WU Shijing HAN Caihong 《排灌机械工程学报》 EI CSCD 北大核心 2020年第9期928-932,共5页
The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so ... The carbon fiber reinforced composite is a new type of composite material with an excellent property in strength and elastic modulus,and has found extensive applications in aerospace,energy,automotive industry and so on.However,this composite has a strict requirement on processing techniques,for example,brittle damage or delamination often exists in conventional processing techniques.Abrasive water jet machining technology is a new type of green machining technique with distinct advantages such as high-energy and thermal distortion free.The use of abrasive water jet technique to process carbon fiber composite materials has become a popular trend since it can significantly improve the processing accuracy and surface quality of carbon fiber composite materials.However,there are too many parameters that affect the quality of an abrasive water jet machining.At present,few studies are carried out on the parameter optimization of such a machining process,which leads to the unstable quality of surface processing.In this paper,orthogonal design of experiment and regression analysis were employed to establish the empirical model between cutting surface roughness and machining process parameters.Then a verified model was used to optimize the machining process parameters for abrasive water jet cutting carbon fiber reinforced composites. 展开更多
关键词 abrasive water jet carbon fiber reinforced composites surface roughness orthogonal experiment regression analysis
下载PDF
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites
3
作者 李媛媛 嵇宇 +5 位作者 谷志旗 李秋雅 何鸿喆 张岩 王萍 眭建华 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
下载PDF
Determination of Water Diffusion Coefficients and Dynamics in Adhesive/Carbon Fiber Reinforced Epoxy Resin Composite Joints 被引量:3
4
作者 WANG Chao WANG zhi +1 位作者 WANG Jing SU Tao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期474-478,共5页
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan... To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment. 展开更多
关键词 Diffusion coefficient DYNAMICS Energy dispersive X-ray spectroscopy Elemental analysis Adhesive/ carbon fiber reinforced epoxy resin composites joint
下载PDF
Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets 被引量:1
5
作者 A.AMIRI M.MOHAMMADIMEHR M.ANVARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1027-1038,共12页
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she... In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae. 展开更多
关键词 stress and buckling analysis thick-walled micro cylindrical sandwich panel flexible foam core carbon nanotube reinforced composite(CNTRC)face sheet high-order shear deformation theory(HSDT)
下载PDF
Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature
6
作者 H.V.TUNG L.T.N.TRANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1327-1348,共22页
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. T... The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures. 展开更多
关键词 carbon nanotube reinforced composite(CNTRC) porous functionally graded material(FGM) thermal instability cylindrical shell advanced sandwich model
下载PDF
Effects of Carbon Nanotubes by Electrophoretic Deposition on Interlaminar Properties of Two Dimensional Carbon/carbon Composites
7
作者 黎云玉 GUO Lingjun +2 位作者 LI Hejun MA Haili 宋强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期994-1000,共7页
Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabrica... Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabricate two-dimensional(2 D) carbon/carbon(C/C) composites. Effects of EPD CNTs on interlaminar shear performance and mode Ⅱ interlaminar fracture toughness(GⅡc) of 2 D C/C composites were investigated. Results showed that EPD CNTs were uniformly covered on carbon fibers, acting as a porous coating. Such a CNT coating can obviously enhance the interlaminar shear strength and GⅡc of 2 D C/C composites. With increaing EPD CNTs, the interlaminar shear strength and GⅡc of 2 D C/C composites increase greatly and then decrease, both of which run up to their maximum values, i e, 13.6 MPa and 436.0 J·m-2, when the content of EPD CNTs is 0.54 wt%, 2.27 and 1.45 times of the baseline. Such improvements in interlaminar performance of 2 D C/C composites are mainly beneficial from their increased cohesion of interlaminar matrix, which is caused not only by the direct reinforcing effect of EPD CNT network but also by the capacity of EPD CNTs to refine pyrocarbon matrix and induce multilayered microstructures that greatly increase the crack propagation resistance through "crack-blocking and-deflecting mechanisms". 展开更多
关键词 electrophoretic deposition carbon nanotube C/C composite interlaminar performance reinforcing mechanism
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
8
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th... This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites. 展开更多
关键词 carbon fiber reinforced polymers composites Ultrasonic vibration drilling
全文增补中
Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint:A review
9
作者 Junke JIAO Jihao XU +3 位作者 Chenghu JING Liyuan SHENG Haolei RU Hongbo XIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期13-31,共19页
Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical proper... Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical properties between CFRTP and metals,there are lots of challenges to connect them with high quality.Laser welding has a good application prospect in CFRTP and metals connection,and a significant research progress has been made in the exploration of CFRTP-metal laser joining mechanism,joining process optimization,joining strength improvement and joining defects controlling.However,there are still some problems need to be solved for this technology application.In this paper,the research progress of CFRTP-metal laser joining was summarized in three major aspects:theoretical modeling and simulation analysis,process exploration and parameter optimization,joint performance improvement and process innovation.And,problems and challenges of this technology were discussed,and the outlook of this research was provided. 展开更多
关键词 carbon fiber reinforced thermoplastic composite and metal hybrid joints Defects controlling Laser welding Numerical simulation
原文传递
Microstructure and properties of SiC gradiently coated C_f/C composites prepared by a RCLD method 被引量:1
10
作者 Jun-hua Chen Guang-li Chen +1 位作者 Hao-ran Geng Yan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期334-338,共5页
The SiC gradiently coated carbon fiber/carbon (Cf/C) composites were prepared by a two-step rapid chemical liquid deposition (RCLD) method. The microstructure and properties of the composites were investigated usi... The SiC gradiently coated carbon fiber/carbon (Cf/C) composites were prepared by a two-step rapid chemical liquid deposition (RCLD) method. The microstructure and properties of the composites were investigated using X-ray diffraction, scanning electron microscopy together with energy dispersive X-ray analysis, bending tests, and oxidation tests. The experimental results show that the surface layer of the composites is composed of SiC, pyrocarbon, and carbon fibers. Their inner area consists of pyrocarbon and carbon fibers. The SiC content gradiently decreases with increasing distance from the outer surface to the center of the composites. Furthermore, the thickness of the SiC layer increases with increasing tetraethylorthosilicate content and deposition time. SiC coatings have no significant influence on the bending strength of the composites. However, the oxidation resistance of the composites increases with increasing thickness of the SiC layer. 展开更多
关键词 carbon fiber reinforced composites chemical liquid deposition bending strength oxidation resistance
下载PDF
Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates
11
作者 朱洪艳 李地红 +2 位作者 张东兴 吴宝昌 陈玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期470-475,共6页
The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Speci... The effects of voids(void content,void shape and size)on the interlaminar shear strength of[(±45)_(4)/(0,90)/(±45)_(2)]_(S) and [(±45)/0_(4)/(0,90)/0_(2)]_(S) composite laminates were investigated.Specimens with void contents in the range of 0.2%-8.0%for [(±45)_(4)/(0,90)/(±45)_(2)]_(S) and 0.2%-6.1%for[(±45)/0_(4)/(0,90)/0_(2)]_(S) were fabricated from carbon/epoxy fabric through varying autoclave pressures.The characteristics of the voids were studied by using optical image analysis to explain the interlaminar shear strength results.The influences of voids on the interlaminar shear strength of the two stacking sequences were compared in terms of the void content and size and shape of the void.The effect of voids on the initiation and propagation of interlaminar failure of both stacking sequence composites was found. 展开更多
关键词 carbon fibre reinforced polymer(CFRP)composite void content void size void shape interlaminar shears strength
下载PDF
An Analytical Approach for Nonlinear Buckling Analysis of Torsionally Loaded Sandwich Carbon Nanotube Reinforced Cylindrical Shells with Auxetic Core
12
作者 Dang Thuy Dong Nguyen Thi Phuong +6 位作者 Vu Hoai Nam Le Ngoc Ly Nguyen Van Tien Vu Minh Duc Tran Quang Minh Vu Tho Hung Nguyen Thi Huong Giang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期468-484,共17页
The main aim of this paper is to present an analytical approach on the postbuckling for torsionally loaded sandwich carbon nanotube(CNT)reinforced cylindrical shells with the auxetic core.The considered shells consist... The main aim of this paper is to present an analytical approach on the postbuckling for torsionally loaded sandwich carbon nanotube(CNT)reinforced cylindrical shells with the auxetic core.The considered shells consist of three layers,external and internal CNT reinforced layers,and the auxetic lattice core made by isotropic material.The homogenization model for honeycomb auxetic lattice core is utilized,and the equilibrium equations are formulated based on the nonlinear Donnell’s thin shell theory with von Karman geometrical nonlinearities.The three terms of deflection are considered,the Airy’s stress function and Galerkin’s method are utilized,the explicit expression of critical buckling of torsionally loaded shells and load-deflection expression of postbuckling states are achieved.The effects of two carbon nanotube reinforced layers,the auxetic core layer,the volume fraction of carbon nanotube on the torsional buckling behavior are examined and remarked. 展开更多
关键词 Nonlinear postbuckling carbon nanotube reinforced composite cylindrical shell torsion auxetic core
原文传递
Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers 被引量:3
13
作者 Liyang CAO Yongsheng LIU +5 位作者 Yunhai ZHANG Yejie CAO Jingxin LI Jie CHEN Lu ZHANG Zheng QI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期247-262,共16页
In this work,pitch-based carbon fibers were utilized to reinforce silicon carbide(SiC)composites via reaction melting infiltration(RMI)method by controlling the reaction temperature and resin carbon content.Thermal co... In this work,pitch-based carbon fibers were utilized to reinforce silicon carbide(SiC)composites via reaction melting infiltration(RMI)method by controlling the reaction temperature and resin carbon content.Thermal conductivities and bending strengths of composites obtained under different preparation conditions were characterized by various analytical methods.Results showed the formation of SiC whiskers(SiC_(w))during RMI process according to vapor–solid(VS)mechanism.SiC_(w) played an important role in toughening the C_(pf)/SiC composites due to crack bridging,crack deflection,and SiC_(w) pull-out.Increase in reaction temperature during RMI process led to an initial increase in thermal conductivity along in-plane and thickness directions of composites,followed by a decline.At reaction temperature of 1600℃,thermal conductivities along the in-plane and thickness directions were estimated to be 203.00 and 39.59 W/(m×K),respectively.Under these conditions,bending strength was recorded as 186.15±3.95 MPa.Increase in resin carbon content before RMI process led to the generation of more SiC matrix.Thermal conductivities along in-plane and thickness directions remained stable with desirable values of 175.79 and 38.86 W/(m×K),respectively.By comparison,optimal bending strength improved to 244.62±3.07 MPa.In sum,these findings look promising for future application of pitch-based carbon fibers for reinforcement of SiC ceramic composites. 展开更多
关键词 pitch-based carbon fiber continuous carbon fiber reinforced silicon carbide matrix composites(C/SiC) thermal conductivity bending strength
原文传递
Oxidation behaviors of carbon fiber reinforced multilayer SiC–Si_(3)N_(4) matrix composites 被引量:2
14
作者 Xiaolin DANG Donglin ZHAO +5 位作者 Tong GUO Xiaomeng FAN Jimei XUE Fang YE Yongsheng LIU Laifei CHENG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期354-364,共11页
Oxidation behaviors of carbon fiber reinforced SiC matrix composites(C/SiC)are one of the most noteworthy properties.For C/SiC,the oxidation behavior was controlled by matrix microcracks caused by the mismatch of coef... Oxidation behaviors of carbon fiber reinforced SiC matrix composites(C/SiC)are one of the most noteworthy properties.For C/SiC,the oxidation behavior was controlled by matrix microcracks caused by the mismatch of coefficients of thermal expansion(CTEs)and elastic modulus between carbon fiber and SiC matrix.In order to improve the oxidation resistance,multilayer SiC–Si_(3)N_(4) matrices were fabricated by chemical vapor infiltration(CVI)to alleviate the above two kinds of mismatch and change the local stress distribution.For the oxidation of C/SiC with multilayer matrices,matrix microcracks would be deflected at the transition layer between different layers of multilayer SiC–Si_(3)N_(4) matrix to lengthen the oxygen diffusion channels,thereby improving the oxidation resistance of C/SiC,especially at 800 and 1000℃.The strength retention ratio was increased from 61.9%(C/SiC–SiC/SiC)to 75.7%(C/SiC–Si_(3)N_(4)/SiC/SiC)and 67.8%(C/SiC–SiC/Si_(3)N_(4)/SiC)after oxidation at 800℃for 10 h. 展开更多
关键词 carbon fiber reinforced SiC matrix composites(C/SiC) multilayer Si_(3)N_(4)matrices elastic modulus mismatch coefficient of thermal expansion(CTE)mismatch oxidation resistance
原文传递
A Novel Multiscale Reinforcement by In-Situ Growing Carbon Nanotubes on Graphene Oxide Grafted Carbon Fibers and Its Reinforced Carbon/Carbon Composites with Improved Tensile Properties 被引量:8
15
作者 Yunyu Li Ling-jun Guo +2 位作者 Ya-wen Wang He-jun Li Qiang Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期419-424,共6页
In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). ... In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance. 展开更多
关键词 Multiscale reinforcement carbon fiber Graphene oxide carbon nanotube carbon/carbon composite Tensile property
原文传递
Tribological behaviour of fused deposition modelling printed short carbon fibre reinforced nylon composites with surface textures under dry and water lubricated conditions 被引量:1
16
作者 Ming LUO Siyu HUANG +2 位作者 Ziyan MAN Julie M.CAIRNEY Li CHANG 《Friction》 SCIE EI CAS CSCD 2022年第12期2045-2058,共14页
Fused deposition modelling(FDM)printed short carbon fibre reinforced nylon(SCFRN)composites were fabricated.The friction and wear behaviour of printed materials were systematically investigated under both dry sliding ... Fused deposition modelling(FDM)printed short carbon fibre reinforced nylon(SCFRN)composites were fabricated.The friction and wear behaviour of printed materials were systematically investigated under both dry sliding and water lubricated conditions.The results showed that with short fibre enhancements,the printed SCFRN achieved a lower friction coefficient and higher wear resistance than nylon under all tested conditions.Further,under water lubricated conditions,the printed SCFRN exhibited a low,stable friction coefficient due to the cooling and lubricating effects of water.However,the specific wear rate of the printed specimens could be higher than that obtained under dry sliding conditions,especially when the load was relatively low.The square textured surface was designed and created in the printing process to improve materials’tribological performance.It was found that with the textured surface,the wear resistance of the printed SCFRN was improved under dry sliding conditions,which could be explained by the debris collection or cleaning effect of surface texture.However,such a cleaning effect was less noticeable under lubricated conditions,as the liquid could clean the surface effectively.On the other hand,surface textures could increase the surface area exposed to water,causing surface softening due to the higher water absorption rate.As a result,the samples having surface textures showed higher wear rates under lubricated conditions.The work has provided new insights into designing wear resistant polymer materials using three-dimensional(3D)printing technologies,subjected to different sliding conditions. 展开更多
关键词 fused deposition modelling(FDM) short carbon fibre reinforced nylon(SCFRN)composites transfer film friction and wear
原文传递
Research on the Crack Detection of Conductive Components Using Pulsed Eddy Current Thermography 被引量:8
17
作者 ZHOU Deqiang CHANG Xiang +3 位作者 DU Yang CAO Piyu WANG Hua ZHANG Hong 《Instrumentation》 2017年第3期59-68,共10页
Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different mater... Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is. 展开更多
关键词 Pulsed Eddy Current Thermography Finite Element Analysis carbon Fiber reinforced Composite Material Metal Material
下载PDF
Facile preparation of a SiC@SiO_(2)nanowire-toughened ZrB_(2)-SiC/SiC bilayer coating with good interfacial bonding,high toughness,and excellent cyclic ablation resistance on C/CA composites
18
作者 Meng Yan Chenglong Hu +6 位作者 Jian Li Shengyang Pang Bohui Sun Rida Zhao Bin Liang Rui Luo Sufang Tang 《Journal of Advanced Ceramics》 SCIE EI CAS 2024年第4期486-495,共10页
Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as therma... Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as thermal insulation materials.However,preparing the coatings with excellent oxidation and ablation resistance while avoiding evident damage to the C/CA substrate still remains a challenge.Herein,a SiC@SiO_(2)nanowire-toughened ZrB2–SiC/SiC bilayer coating with a large thickness of 500μm was prepared on C/CA using a one-step low-temperature reaction sintering method,which simultaneously formed a sintered outer layer with even-distributed nanowires and a siliconized gradient inner layer.By courtesy of the synergic thermal response of the layers and the crack deflection induced by the nanowires,the resulting coating has moderate residual compressive stress of 0.08–1.22 GPa in the interface,high interfacial bonding strength of 6.02 MPa,and good fracture toughness of 4.36 MPa·m1/2.Benefited from the optimum components and improved structure,the coating shows excellent cyclic ablation resistance with linear ablation rates of 0.1μm/s at 1650℃for 1500 s(300 s×5 cycles)and 0.4μm/s at 1850℃for 900 s(300 s×3 cycles).The one-step preparation strategy contributes to little damage to the substrate,thus showing the well-preserved mechanical and thermal insulation properties. 展开更多
关键词 coating carbon fiber reinforced carbon aerogel(C/CA)composites toughness interface residual stress
原文传递
Laser joining of CFRTP to titanium alloy via laser surface texturing 被引量:12
19
作者 Caiwang TAN Jianhui SU +3 位作者 Ziwei FENG Yifan LIU Bo CHEN Xiaoguo SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期103-114,共12页
Grid pattern was textured on Ti-6 Al-4 V alloy(TC4)substrate surface by nanosecond laser system.Laser joining of carbon fiber reinforced thermoplastic composite(CFRTP)to TC4 joints were performed,and the effect of tex... Grid pattern was textured on Ti-6 Al-4 V alloy(TC4)substrate surface by nanosecond laser system.Laser joining of carbon fiber reinforced thermoplastic composite(CFRTP)to TC4 joints were performed,and the effect of texture grid depth was investigated.The contact angle of molten CFRTP on textured TC4 surface was measured and the tensile-shear force was tested.The fracture surface and interface morphology were observed.The results indicated that the wettability of molten CFRTP on TC4 surface improved remarkably after laser textured TC4.Shear force of CFRTP/TC4 joints was increased by 156%after laser textured TC4 surface.When the depth of grid was deeper than 100μm,contact angle increased and incomplete filling of molten CFRTP in grid occurred,the shear force thus decreased gradually.Resin-carbon fibers mixture was adhered on the fracture surface of TC4,and the variation tendency of adhesion ratio was consistent with that of shear force.TC4 matrix was exfoliated from substrate and adhered at the fracture surface of CFRTP,indicating stronger mechanical interlocking occurred at the joining interface after laser textured TC4 surface.Beside mechanical interlocking,compound layer consisted of CTi_(0.42)V_(1.58)carburization phase was also confirmed at interface,suggesting that chemical bonding also occurred at the joining interface. 展开更多
关键词 carbon fiber reinforced thermoplastic composite(CFRTP) Grid depth Laser joining Laser texturing TC4
原文传递
Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires 被引量:3
20
作者 Xiaojun GU Xiuzhong SU +3 位作者 Jun WANG Yingjie XU Jihong ZHU Weihong ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第4期547-557,共11页
Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome thi... Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results. 展开更多
关键词 carbon fiber reinforced polymer composite shape memory alloy wire impact resistance drop-weight test finite element simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部