期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project(CDRMIP)
1
作者 Jiangbo JIN Duoying JI +9 位作者 Xiao DONG Kece FEI Run GUO Juanxiong HE Yi YU Zhaoyang CHAI He ZHANG Dongling ZHANG Kangjun CHEN Qingcun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期989-1000,共12页
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra... Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature. 展开更多
关键词 CAS-ESM2.0 CDRMIP carbon dioxide removal AMOC temperature PRECIPITATION sea surface height
下载PDF
A Plan to Extract Gigatons of Atmospheric CO2 through Agroforestry
2
作者 Darrin F. Meyer 《Atmospheric and Climate Sciences》 2024年第4期396-406,共11页
The UN International Panel Environment Programme (“UNEP”), 2023 Emissions Gap Report urgently presses the global community to adopt a two-pronged approach to reduce atmospheric concentration of CO2—expedite efforts... The UN International Panel Environment Programme (“UNEP”), 2023 Emissions Gap Report urgently presses the global community to adopt a two-pronged approach to reduce atmospheric concentration of CO2—expedite efforts to reduce annual CO2 emissions;and increase investment in large-scale carbon dioxide removal (“CDR”) projects. The Gap Report sets a 2050 target of six-gigatons annual land-based CDR. Our proposed agroforestry project will convert thirty-five-million acres of rangeland in the American Great Plains to silvopasture, combining growing trees and raising livestock. Employing agroforestry interests 61% of Great Plaints farmers/ranchers recently surveyed. The Project plans to annually collect + six-gigatons CO2 equiv. of fallen leaves and store the stable carbon-rich biomass underground for centuries. The purpose of this paper is to describe the framework for formation of a global partnership at the local, regional, and international levels to coordinate public and private financing mechanisms, implement, and operate a large-scale CDR Project that will meaningfully impact the global effort to mitigate climate change. 展开更多
关键词 carbon Sequestration AGROFORESTRY SILVOPASTURE Climate Solution carbon Dioxide Removal
下载PDF
Research on Existing Pattern of Carbon and Its Removal from Fly Ash 被引量:1
3
作者 杨玉芬 章新喜 陈清如 《Journal of China University of Mining and Technology》 2002年第2期172-175,共4页
Fly ash is a fine and dispersed powder discharged from power station after the coal being burned. With the deepening of people’s recognition about the pollution problem of fly ash, the ways of utilizing fly ash are g... Fly ash is a fine and dispersed powder discharged from power station after the coal being burned. With the deepening of people’s recognition about the pollution problem of fly ash, the ways of utilizing fly ash are gradually increasing. Utilizing value of fly ash is closely related to the unburned carbon content.On the basis of analysis of modern testing method,a fundamental thinking is theoretically posed for decreasing unburned carbon content from fly ash by a dry removing carbon technology. The triboelectric separation method shown that the above mentioned thinking of dry removing carbon from fly ash is practical. 展开更多
关键词 fly Ash unburned carbon carbon removal tribo electric separation
下载PDF
Simultaneous Carbon and Nitrogen Removal in Wastewater Treatment Using a Partially Packed Biological Aerated Filter (BAF) without Backwashing Process
4
作者 Z. Amir S. Fatihah +1 位作者 M. Denecke S.M. Zain 《Journal of Environmental Science and Engineering》 2010年第7期15-23,共9页
Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This s... Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This study is to investigate the possibility of removing carbon and nitrogen simultaneously in a biological aerated filter (BAF) with partially packed media without any backwashing process. The upper part of BAF up to 0.5 m depth is packed with plastic media (Kaldnes K1) with diameter and length of 10 mm and 7 mm respectively. This partially packed BAF creates a hybrid system of attached growth and suspended growth combined in a single reactor. Three C:N ratios, i.e. 15, 10 and 4, were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 1.0±0.54 kg COD/(m^3·d). The organic loading rate (OLR) ratios were calculated based on carbon and TKN loading. The carbon removal percentage of 86.7±7.3%, 85.1±10.3%, and 91.0±5.6% and TKN removal percentage of 24.7±11.6%, 48.0±25.9% and 62.8±7.9% were achieved after steady-state for the C:N ratio of 15, 10, and 4 respectively. Suspended solid concentration in the effluent was found to be high throughout the treatment, but no clogging occurred during the 4 months of operation period even though backwashing was eliminated. 展开更多
关键词 BAF carbon removal NITRIFICATION BACKWASHING C:N ratio
下载PDF
Response of ocean acidification to atmospheric carbon dioxide removal
5
作者 Jiu Jiang Long Cao +4 位作者 Xiaoyu Jin Zechen Yu Han Zhang Jianjie Fu Guibin Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期79-90,共12页
Artificial CO_(2)removal from the atmosphere(also referred to as negative CO_(2)emissions)has been proposed as a potential means to counteract anthropogenic climate change.Here we use an Earth system model to examine ... Artificial CO_(2)removal from the atmosphere(also referred to as negative CO_(2)emissions)has been proposed as a potential means to counteract anthropogenic climate change.Here we use an Earth system model to examine the response of ocean acidification to idealized atmospheric CO_(2)removal scenarios.In our simulations,atmospheric CO_(2)is assumed to increase at a rate of 1%per year to four times its pre-industrial value and then decreases to the pre-industrial level at a rate of 0.5%,1%,2%per year,respectively.Our results show that the annual mean state of surface ocean carbonate chemistry fields including hydrogen ion concentration([H^(+)]),pH and aragonite saturation state respond quickly to removal of atmospheric CO_(2).However,the change of seasonal cycle in carbonate chemistry lags behind the decline in atmospheric CO_(2).When CO_(2)returns to the pre-industrial level,over some parts of the ocean,relative to the pre-industrial state,the seasonal amplitude of carbonate chemistry fields is substantially larger.Simulation results also show that changes in deep ocean carbonate chemistry substantially lag behind atmospheric CO_(2)change.When CO_(2)returns to its pre-industrial value,the whole-ocean acidity measured by[H^(+)]is 15%-18%larger than the pre-industrial level,depending on the rate of CO_(2)decrease.Our study demonstrates that even if atmospheric CO_(2)can be lowered in the future as a result of net negative CO_(2)emissions,the recovery of some aspects of ocean acidification would take decades to centuries,which would have important implications for the resilience of marine ecosystems. 展开更多
关键词 carbon dioxide removal Net negative CO_(2)emission Ocean acidification Climate change Earth system modeling
原文传递
Galerkin-based extended Kalman filter with application to CO2 removal system 被引量:2
6
作者 LV Ming-bo LI Yun-hua GUO Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1780-1789,共10页
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all... The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning. 展开更多
关键词 carbon dioxide removal system GALERKIN infinite nonlinear filter extend Kalman filter
下载PDF
Geoengineering: Basic science and ongoing research efforts in China 被引量:2
7
作者 CAO Long GAO Chao-Chao ZHAO Li-Yun 《Advances in Climate Change Research》 SCIE CSCD 2015年第3期188-196,共9页
Geoengineering (also called climate engineering), which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas ... Geoengineering (also called climate engineering), which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geo- engineering can be broadly divided into two categories: solar geoengineering (also called solar radiation management, or SRM), which aims to reflect more sunlight to space, and carbon dioxide removal (CDR), which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues: 1) climate response to the reduction in solar irradiance and 2) climate response to the reduction in atmospheric COe. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep understanding of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region. 展开更多
关键词 GEOENGINEERING Climate change mitigation carbon dioxide removal Solar geoengineering
下载PDF
Optimize Operation of Partial Denitrification System for Simultaneous Treatment of Low C/N Municipal and Nitrate Wastewaters
8
作者 Chunxue BI Deshuang YU 《Agricultural Biotechnology》 CAS 2020年第3期121-123,共3页
In order to realize the simultaneous treatment of low C/N municipal and nitrate( NO3^--N) wastewaters,a sequencing batch reactor( SBR) was used to optimize the partial denitrification( PD),which the influent substrate... In order to realize the simultaneous treatment of low C/N municipal and nitrate( NO3^--N) wastewaters,a sequencing batch reactor( SBR) was used to optimize the partial denitrification( PD),which the influent substrate and the anoxic reaction time were appropriately controlled. The carbon and nitrogen removal and the characteristic parameters of PD during long-term operation were studied. Experimental results showed that the PD showed stable characteristics of nitrogen and carbon removal and NO2^--N accumulation after an adaptation of 20 d with municipal wastewater used. The anoxic reaction time was extended from 50 to 70 min with the initial COD/NO3^--N decreased from 3. 0 to about 2. 5. When the influent NO3^--N was 117. 93 mg/L,the effluent NO2^--N and NAR were 23. 10 mg/L and 82. 26%,respectively,and the nitrogen and carbon removal rate reached 91. 76% and 65. 70%,respectively. The effluent NO2^--N/NH4^+ -N meantime reached 1.17-1. 22. Moreover,the cumulative concentration of NO2^--N and the system NAR increased linearly with the consumption of NO3^--N and COD,and the change trend was highly significant within 0-20 min,and gradually flattened. 展开更多
关键词 Partial denitrification Municipal wastewater Nitrate wastewater Nitrogen and carbon removal Nitrite accumulation
下载PDF
Efficient Degradation 4-Nitrophenol by Photocatalysis from Modified TiO_2 Doped Copper
9
作者 郑凯 韩玉华 +2 位作者 张海云 李红艺 黄国正 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期831-835,共5页
In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures... In the present study,a film consisting of TiO_2 doped with copper was prepared for efficiently decomposing 4-nitrophenol(4-NP) by photocatalysis.The preparing process of TiO_2 doped with copper includes two procedures:preparing Ti(OH)_4 doped with copper and synthesizing anatase and rutile TiO_2 doped with copper.Ti(OH)_4 doped with copper could be achieved by hydrolyzing TiCl_4in the mixed solution containing deionized water and copper oxalate.The Ti(OH)_4 doped with copper can be gained successfully by the following procedures:rinsing,drying and vacuum drying.The Ti(OH)_4 doped with copper could be converted into anatase TiO_2 doped with copper and rutile TiO_2 doped with copper by incineration for 4.5 h at 723 and 1 073 K,respectively.Characterizations of anatase TiO_2 doped with copper and rutile TiO_2 doped with copper were determined by X-ray diffraction(XRD) and energy dispersion of X-ray(EDX).Anatase and rutile TiO_2 doped with copper were dissolved in a mixed solution containing isopropanol and diethylamine.Stainless electrode was submerged into with the solutions,the film of TiO_2 was formed by drying the thin layer at a ramp rate of 3℃/min until 373 K,and this temperature was held for 1 h.The temperature of the oven was subsequently increased to a final temperature of 823 K at a ramp rate of 3℃/min,and was held at this value for 1 h.The stainless steel covered with modified TiO_2 film was utilized as the anode.The stainless steel mesh was used as the cathode.The cathode and anode were connected with the source and immersed into the solution with 100 mg/L 4-NP.The whole reaction on photocatalysis was perfectly carried out after ultraviolet radiation and aerator were run.The experimental results showed that:cracking ratio of 4-NP ring,the removal ratio of chemical oxygen demand(COD) and total organic carbon(TOC) were respectively more than 90%,80% and 80% within 2 h.Degradation of 4-NP implied its potential application in associated wastewater. 展开更多
关键词 doped with copper 4-nitrophenol(4-NP) cracking ratio of ring removal ratio of total organic carbon(TOC)
下载PDF
Comparison of the carbon cycle and climate response to artificial ocean alkalinization and solar radiation modification
10
作者 Xiao-Yu JIN Long CAO 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期322-334,共13页
Carbon dioxide removal and solar radiation modification(SRM)are two classes of proposed climate intervention methods.A thorough understanding of climate system response to these methods calls for a good understanding ... Carbon dioxide removal and solar radiation modification(SRM)are two classes of proposed climate intervention methods.A thorough understanding of climate system response to these methods calls for a good understanding of the carbon cycle response.In this study,we used an Earth system model to examine the response of global climate and carbon cycle to artificial ocean alkalinization(AOA),a method of CO_(2)removal,and reduction in solar irradiance that represents the overall effect of solar radiation modification.In our simulations,AOA is applied uniformly over the global ice-free ocean under the RCP8.5 scenario to bring down atmospheric CO_(2)to the level of RCP4.5,and SRM is applied uniformly over the globe under the RCP8.5 scenario to bring down global mean surface temperature to the level of RCP4.5.Our simulations show that with the same goal of temperature stabilization,AOA and SRM cause fundamentally different perturbations of the ocean and land carbon cycle.By the end of the 21st century,relative to the simulation of RCP8.5,AOA-induced changes in ocean carbonate chemistry enhances global oceanic CO_(2)uptake by 983 PgC and increases global mean surface ocean pH by 0.42.Meanwhile,AOA reduces land CO_(2)uptake by 79 PgC and reduces atmospheric CO_(2)concentration by 426×10^(−6).By contrast,relative to the simulation of RCP8.5,SRM has a minor effect on the oceanic CO_(2)uptake and ocean acidification.SRM-induced cooling enhances land CO_(2)uptake by 140 PgC and reduces atmospheric CO_(2)concentration by 63×10^(−6).A sudden termination of SRM causes a rate of temperature change that is much larger than that of RCP8.5.A sudden termination of AOA causes a rate of temperature change that is comparable to that of RCP8.5 and a rate of ocean acidification that is much larger than that of RCP8.5. 展开更多
关键词 carbon dioxide removal Solar radiation modification GEOENGINEERING carbon cycle Ocean acidification
原文传递
Cost-benefit comparison of carbon capture,utilization,and storage retrofitted to different thermal power plants in China based on real options approach 被引量:6
11
作者 FAN Jing-Li SHEN Shuo +3 位作者 XU Mao YANG Yang YANG Lin ZHANG Xian 《Advances in Climate Change Research》 SCIE CSCD 2020年第4期415-428,共14页
A trinomial tree model based on a real options approach was developed to evaluate the investment decisions on carbon capture,utilization,and storage(CCUS)retrofitted to the three main types of thermal power plants in ... A trinomial tree model based on a real options approach was developed to evaluate the investment decisions on carbon capture,utilization,and storage(CCUS)retrofitted to the three main types of thermal power plants in China under the same power generation and CO2 emissions levels.The plant types included pulverized coal(PC),integrated gasification combined cycle(IGCC),and natural gas combined cycle(NGCC)plants.We take into account a subsidy policy consistent with the 45Q tax credit of the U.S.,as well as uncertainty factors,such as carbon price,technological progress,CO_(2) geological storage paths,oil price,and electricity price.The results showed that the investment benefit of ordinary NGCC power plants is 93.04 million USD.This provides greater economic advantages than the other two plant types as their investment benefit is negative if the captured CO_(2) was used for enhanced water recovery(EWR),even if 45Q subsidies are provided.Compared with NGCC+CCUS power plants,PC+CCUS and IGCC+CCUS power plants have more advantages in terms of economic benefits and emission reduction.The 45Q subsidy policy reduced the critical carbon price,which determines the decision to invest or not,by 30.14 USDt^(-1) for the PC and IGCC power plants and by 15.24 USDt^(-1) for the NGCC power plants.Nevertheless,only when the subsidy reaches at least 71.84 USDt^(-1) and the period limit is canceled can all three types of power plants be motivated to invest in CCUS and used the capture CO_(2) for EWR.Overall,the government should focus on the application of CCUS in coal-fired power plants(in addition to developing gas power generation),especially when CO_(2) is used for enhanced oil recovery(EOR).The government could introduce fiscal policies,such as 45Q or stronger,to stimulate CCUS technology development in China. 展开更多
关键词 carbon dioxide remove CCUS Real option Government subsidy Thermal power plants
原文传递
Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review 被引量:12
12
作者 Haishu Sun Shengjun Xu +1 位作者 Guoqiang Zhuang Xuliang Zhuang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期242-248,共7页
Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the ... Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However,large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms. 展开更多
关键词 Microbial fuel cells Wastewater treatment Electricity generation Simultaneous carbon and nitrogen removal Electron transfer
原文传递
The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic appraisal 被引量:2
13
作者 Andrew LOCKLEY Ted von HIPPEL 《Frontiers of Engineering Management》 2021年第3期456-464,共9页
Liquid Air Energy Storage(LAES)is at pilot scale.Air cooling and liquefaction stores energy;reheating revaporises the air at pressure,powering a turbine or engine(Ameel et al.,2013).Liquefaction requires water&CO2... Liquid Air Energy Storage(LAES)is at pilot scale.Air cooling and liquefaction stores energy;reheating revaporises the air at pressure,powering a turbine or engine(Ameel et al.,2013).Liquefaction requires water&CO2 removal,preventing ice fouling.This paper proposes subsequent geological storage of this CO2–offering a novel Carbon Dioxide Removal(CDR)by-product,for the energy storage industry.It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach.Similarly,established Compressed Air Energy Storage(CAES)uses air compression and subsequent expansion.CAES could also add CO2 scrubbing and subsequent storage,at extra cost.CAES stores fewer joules per kilogram of air than LAES–potentially scrubbing more CO2 per joule stored.Operational LAES/CAES technologies cannot offer full-scale CDR this century(Stocker et al.,2014),yet they could offer around 4%of projected CO2 disposals for LAES and<25%for current-technology CAES.LAES CDR could reach trillion-dollar scale this century(20 billion USD/year,to first order).A larger,less certain commercial CDR opportunity exists for modified conventional CAES,due to additional equipment requirements.CDR may be commercially critical for LAES/CAES usage growth,and the necessary infrastructure may influence plant scaling and placement.A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century(ignoring siting constraints)–but this must be costed against competing CDR and energy storage technologies. 展开更多
关键词 carbon dioxide removal Liquid Air Energy Storage Compressed Air Energy Storage GEOENGINEERING
原文传递
Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process 被引量:4
14
作者 Qian Zhao Hongjun Han +3 位作者 Baolin Hou Haifeng Zhuang Shengyong Jia Fang Fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第11期2231-2239,共9页
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anae... A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAG compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). 展开更多
关键词 Coal gasification wastewater Short-cut nitrogen removal Granular activated carbon PCR-DGGE Denitrification enhancement
原文传递
A nanofilter composed of carbon nanotube-silver composites for virus removal and antibacterial activity improvement 被引量:1
15
作者 Jun Pyo Kim Jae Ha Kim +2 位作者 Jieun Kim Soo No Lee Han-Oh Park 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期275-283,共9页
We have developed a new nanofilter using a carbon nanotube-silver composite material that is capable of efficiently removing waterborne viruses and bacteria.The nanofilter was subjected to plasma surface treatment to ... We have developed a new nanofilter using a carbon nanotube-silver composite material that is capable of efficiently removing waterborne viruses and bacteria.The nanofilter was subjected to plasma surface treatment to enhance its flow rate,which was improved by approximately 62%.Nanoscale pores were obtained by fabricating a carbon nanotube network and using nanoparticle fixation technology for the removal of viruses.The pore size of the nanofilter was approximately 38 nm and the measured flow rate ranged from 21.0 to 97.2 L/(min·m^2)under a pressure of 1–6 kgf/cm^2 when the amount of loaded carbon nanotube-silver composite was 1.0 mg/cm^2.The nanofilter was tested against Polio-,Noro-,and Coxsackie viruses using a sensitive real-time polymerase chain reaction assay to detect the presence of viral particles within the outflow.No trace of viruses was found to flow through the nanofilter with carbon nanotube-silver composite loaded above 0.8 mg/cm^2.Moreover,the surface of the filter has antibacterial properties to prevent bacterial clogging due to the presence of 20-nm silver nanoparticles,which were synthesized on the carbon nanotube surface. 展开更多
关键词 carbon nanotube Silver nanoparticle Virus removal Nanofilter Water purification
原文传递
Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon 被引量:8
16
作者 Runmiao Xue Ariel Donovan +7 位作者 Haiting Zhang Yinfa Ma Craig Adams John Yang Bin Hua Enos Inniss Todd Eichholz Honglan Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期82-91,共10页
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may ... When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. 展开更多
关键词 Disinfection by-products Drinking water treatment Ammonia removal by zeolite N-nitrosodimethylamine(NDMA) N-NITROSAMINES N-nitrosamine precursor removal by zeolite and powdered activated carbon
原文传递
Nb_2O_5 nanowires in-situ grown on carbon fiber: A high-efficiency material for the photocatalytic reduction of Cr(Ⅵ) 被引量:2
17
作者 Yucheng Du Shihao Zhang +2 位作者 Jinshu Wang Junshu Wu Hongxing Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期358-367,共10页
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ... Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability. 展开更多
关键词 carbon fiber Niobium oxide nanowire Photocatalytic reduction Cr(Ⅵ) removal Adsorption efficiency
原文传递
High temperature thermo-photocatalysis driven carbon removal in direct biogas fueled solid oxide fuel cells
18
作者 Doudou Gu Guan Zhang Jing Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3548-3552,共5页
Solid oxide fuel cells(SOFCs)can directly convert renewable biogas into electricity with high efficiency at high temperature,however the long-term stability of SOFCs is significantly affected by the carbon deposition ... Solid oxide fuel cells(SOFCs)can directly convert renewable biogas into electricity with high efficiency at high temperature,however the long-term stability of SOFCs is significantly affected by the carbon deposition on the anode during cell operation.Herein,we report a novel carbon removal approach by high temperature infrared light driven photocatalytic oxidation.Upon the comparison of electrochemical performance of Ni-YSZ anode and TiO_(2)modified Ni-YSZ anode in the state-of-the-art single cell(Ni-YSZ/YSZ/LSCM),the modified anodes exhibit markedly improved peak powder density with simulated biogas fuel(70%CH_(4)+30%CO_(2))at 850℃with less coking after 40 h operation.The high activity and carbon deposition resistance of the modified anode is possibly attributed to the in situ generated hydroxyl radical from the reduced TiO_(x)powder under high temperature infrared light excitation,which is supported by detailed analysis of microstructural information of anodes and the powder-based thermo-photocatalytic experiments. 展开更多
关键词 Thermo-photocatalysis Infrared light excitation carbon removal Biogas utilization Solid oxide fuel cells
原文传递
Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology
19
作者 Yan GUO Chuanfu WU +4 位作者 Qunhui WANG Min YANG Qiqi HUANG Markus MAGEP Tianlong ZHENG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期137-146,共10页
Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/ starch blends as carbon source and carrier for fimctional bacteria. The exclusive and interactive influences of operati... Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/ starch blends as carbon source and carrier for fimctional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y1), denitrification (Y2), and COD release rates (Y3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous mtnncatlon anti clenltnncatlon. The carbon release rate of the blends was controllable. The sensitivity of Y1, Y2, and Y3 to different operating parameters also differed. The sequence for each response was as follows: for Y1, pH 〉 stirring rate 〉 PLA proportion 〉 temperature; for Y2, PH 〉 PLA proportion 〉.temperature.〉 stirring rate; and for Y3, stirring rate 〉pH 〉 PLA proportion 〉 temperature. In this study, the following optimum conditions were observed: temperature, 32.0℃; pH 7.7; stirring rate, 200.0 r · min^-1 and PLA proportion 0.4. Under these conditions Y1 Y2 and Y3 were 134.0 μg-N·g-blend^-1·h^-1, 160.9μg-N-g-blend^-1·h^-1, and 7.6 × 10^3 μg-O·g-blend^-1·h^-1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal. 展开更多
关键词 Nitrogen removal Polylactic acid Starch carbon source Response surface methodology
原文传递
Life cycle assessment of urban uses of biochar and case study in Uppsala,Sweden 被引量:1
20
作者 Elias S.Azzi Erik Karltun Cecilia Sundberg 《Biochar》 SCIE 2022年第1期889-905,共17页
Biochar is a material derived from biomass pyrolysis that is used in urban applications.The environmental impacts of new biochar products have however not been assessed.Here,the life cycle assessments of 5 biochar pro... Biochar is a material derived from biomass pyrolysis that is used in urban applications.The environmental impacts of new biochar products have however not been assessed.Here,the life cycle assessments of 5 biochar products(tree planting,green roofs,landscaping soil,charcrete,and biofilm carrier)were performed for 7 biochar supply-chains in 2 energy contexts.The biochar products were benchmarked against reference products and oxidative use of biochar for steel production.Biochar demand was then estimated,using dynamic material flow analysis,for a new city district in Uppsala,Sweden.In a decarbonised energy system and with high biochar stability,all biochar products showed better climate performance than the reference products,and most applications outperformed biomass use for decarbonising steel production.The climate benefits of using biochar ranged from−1.4 to−0.11 tonne CO_(2)-eq tonne−1 biochar in a decarbonised energy system.In other environmental impact categories,biochar products had either higher or lower impacts than the reference products,depending on biochar supply chain and material substituted,with trade-offs between sectors and impact categories.However,several use-phase effects of biochar were not included in the assessment due to knowledge limitations.In Uppsala’s new district,estimated biochar demand was around 1700 m^(3)year^(−1)during the 25 years of construction.By 2100,23%of this biochar accumulated in landfill,raising questions about end-of-life management of biochar-containing products.Overall,in a post-fossil economy,biochar can be a carbon dioxide removal technology with benefits,but biochar applications must be designed to maximise co-benefits. 展开更多
关键词 BIOCHAR carbon dioxide removal Urban areas BIOECONOMY Life cycle assessment Material flow analysis
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部