The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c...Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.展开更多
Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric an...Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.展开更多
Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the ste...Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.展开更多
Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for p...Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for predicting change over time.Surface soil samples from six ecoregions of the United States were analyzed for permanganate oxidizable C(KMnO4-C)and mineralizable C pools.Variations of SOC ranged from 7.9 mg g^-1(Florida site)to 325 mg g^-1(Hawaii site).Mineralisable C pools and KMnO4-C were highest in soils from the Hawaii site.Mean annual precipitation explains SOC and resistant C pool variations.Clay content was related to mineralisable active C pools and bacterial abundance.Mean annual precipitation and clay content are potential variables for predicting changes in SOC pools at large spatial scales.展开更多
Two types of low carbon MgO - C refractories with 6% graphite were prepared using microporous magnesiarich spinel (5 - 3 and 3 - 1 mm ) and fused magnesia (5 - 3 and 3 - 1 mm ) as coarse aggregates, respectively, ...Two types of low carbon MgO - C refractories with 6% graphite were prepared using microporous magnesiarich spinel (5 - 3 and 3 - 1 mm ) and fused magnesia (5 - 3 and 3 - 1 mm ) as coarse aggregates, respectively, fused magnesia ( ≤1 mm) as fine aggregate, magnesia powder (≤ 0. 088 mm ) , flake graphite powder ( ≤0. 088 mm), metal Al powder ( 〈0. 074 mm) as matrix, and phenol resin as binder. After curing at 220 ℃ and coke-embedded firing at 1 500 ℃ , the apparent porosity, cold crushing strength, cold modulus of rupture, permanent linear change on heating, thermal shock resistance and slag resistance of the specimens were studied comparatively. The results indicate that: ( 1 ) after curing at 220 ℃ and coke-embedded firing at 1 500 ℃, the specimen with microporous magnesia-rich spinel replacing fused magnesia has lower bulk density and higher apparent porosity than the common low car- bon MgO - C specimen. After curing at 220 ℃, the specimen with microporous aggregate has lower strength than common low carbon MgO - C specimen, but after coke-embedded firing at 1 500℃, it has higher strength and lower permanent linear change on heating; (2) low carbon MgO - C specimen using microporous magnesia-rich spinel to replace fused magnesia aggregate has better thermal shock resistance but worse slag resistance.展开更多
Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in...Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in airto renderthefibresinfusiblebefore pyrolysisat1200℃underinertatmospheretoproduceC Sialloy( CSA) fibres. Theextentofstabili sation wasfoundto becriticalto the development of mechanicalstrength of thefibres which varied with heattreatmenttemperature, showing a maximum at 1200 ℃when thestrength was 1 4 1 6 GPa. Thesestrengthsareremarkably goodconsideringthelow modulus whichis duetothe quite high failurestrains. Thefibrescanshow excellentresistanceto oxidation if given an initialshortexposureto oxygen athigh temperature duetotheformation of an im perceptiblelayer of silica. CSAfibreshavethe advantagesof both carbon fibresand SiCfi bres,thusextended application areascan beenvisaged .展开更多
Before and after heat treatment,0Cr15Ni5Cu3MoN stainless steel(SS)samples were immersed in sulfate-reducing bacteria(SRB)environment to study the effect of heat treatment on the antimicrobial properties of Cu-containi...Before and after heat treatment,0Cr15Ni5Cu3MoN stainless steel(SS)samples were immersed in sulfate-reducing bacteria(SRB)environment to study the effect of heat treatment on the antimicrobial properties of Cu-containing stainless steel.The effect of heat treatment on the corrosion resistance and antibacterial ability of 0Cr15Ni5Cu3MoN SS was studied by scanning electron microscopy,transmission electron microscopy,laser scanning confocal microscopy,and electrochemistry.The results show that 0Cr15Cu3 SS has better antibacterial properties with fewer bacteria adsorbed on the surface after heat treatment,and its corrosion resistance is significantly improved.Interestingly,on the 7th day of immersion,the corrosion resistance of the heat-treated stainless steel was lower than that of the rolled stainless steel.This was due to the fact that the rolled samples were protected by biofilm at this time,while the surface bacteria on the heat-treated samples died,resulting in the exposure of the substrate surface and thus reducing the corrosion resistance of the heat-treated samples.Thus,because of the strong bactericidal properties of the heat-treated Cu-containing stainless steel,the corrosion resistance of the samples suddenly decreases in the middle stage of corrosion,and this discovery provides a new view to study the corrosion process of Cu-containing stainless steel in the SRB environment.展开更多
The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different ...The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different morphologies of Ti(C,N)precipitate in hot strips.It is found that the Ti(C,N)precipitate in hot strip using Path 2(put into asbestos box and air cooled)are finer and much more in quantity than that in hot strip using Path 1(held at 730℃ for 30min and furnace cooled).The morphology of Ti(C,N)precipitate in hot strip has great effect on recrystallization texture in the subsequent cold-rolled annealed sheet.γ-fiber texture of strong recrystallization is gained in coldrolled and annealed sheet came from Path 1.On the contrary,in the one came from Path 2,theγ-fiber texture is weak.This may be due to the pinning force of numerous fine Ti(C,N)precipitate which retard the growth of preferential nucleated{111}orientated grains.Annealed steel sheets in the test came from both paths have excellent fishscale resistance.展开更多
Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the ant...Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.展开更多
This work aims at preparing SiAlON-bonded SiC products with high SiAlON contents.Silicon carbide fines,micropowders of Si,Al and alumina with different activities were premixed in a ball mill to obtain different compo...This work aims at preparing SiAlON-bonded SiC products with high SiAlON contents.Silicon carbide fines,micropowders of Si,Al and alumina with different activities were premixed in a ball mill to obtain different composite micropowders.Then silicon carbide particles,the composite micropowders and binder were wet mixed.After shaping the specimens were fired under insulation from direct flame in a shuttle kiln at 1450℃in nitrogen atmosphere.The chemical composition,microstructure,pore size distribution and CO resistance of the prepared specimens were tested.The results showed that:after introducing high-activity micropowder additives the SiAlON content grows from 14.8 mass%to 23.5 mass%;the amount of unreacted alumina and silicon nitride in the specimens falls from 8.78 mass%to 1.79 mass%;micropores with size under 1m increase from 30%to 68%;CO resistance reaches level A.展开更多
We report a wet curing system developed and made suitable for practical application to curing the interior and verticalconcrete surfaces of tunnel linings after the formwork has been removed. In this system, air is ev...We report a wet curing system developed and made suitable for practical application to curing the interior and verticalconcrete surfaces of tunnel linings after the formwork has been removed. In this system, air is evacuated from the gap between the curing sheet and the concrete surface to create a close contact, and by supplying water to the space between the contacting surfaces, a water film is formed over the concrete surface. This enables the wet curing of vertical concrete surfaces and interior surfaces of tunnel linings after the formwork has been removed, a process that has to date been difficult. In this paper, the effects of wet curing on improving the durability of concrete are verified, and examples of the application of wet curing to actual structures are presented.展开更多
A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilizati...A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.展开更多
Arthritis is an acute systemic disease of a joint accompanied by pain.In developed countries,it mainly causes disability among people over 50 years of age.Rheumatoid Arthritis is a type of arthritis that occurs common...Arthritis is an acute systemic disease of a joint accompanied by pain.In developed countries,it mainly causes disability among people over 50 years of age.Rheumatoid Arthritis is a type of arthritis that occurs commonly among elders.The incidence of arthritis is higher in females than in males.There is no permanent diagnosis method for arthritis,but if it was identified in the early stages based on the foot pressure,it can be diagnosed before attaining the critical stage of Rheumatoid Arthritis.The analysis and study of arthritis patients were done using design thinking methodology.Design thinking is a problem-solving methodology that is used tofind a solution for the identification of the early stage of arthritis.This process consists offive stages follows Empathy,Define,Ideate,Prototype,and Testing.To define the problem statement,the Empathy was done with the arthritis patients to know the difficulties faced by them.This paper proposes a measurement technique of early measurement of arthritis using a non-invasive technique.It helps us to detect arthritis using a foot pressure pad that was designed with piezoresistive material and the feature classification was done using Weka.展开更多
BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anod...BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anode for solid oxide fuel cells(SOFCs)with on-cell dry reforming of methane(DRM).The whole pore surface of the scaffold is covered by small BCFN particles formed by BCFN solution impregnation;the large pores near the scaffold surface are filled by BCFN aerogels with a high specific surface area produced by BCFN suspension impregnation,which act as a catalytic layer for on-cell DRM.After reduction,the anode consists of a Ni–GDC scaffold and BCFN particles with exsolved FeNi3 nanoparticles.This BCFN-impregnated Ni–GDC anode has higher electrical conductivity,electrochemical activity,and resistance to carbon deposition,with which the cell shows maximum power densities between 1.44 and 0.92 W·cm^(−2) when using H_(2) and between 1.09 and 0.50 W·cm^(−2) when using CO_(2)–CH_(4) at temperatures ranging from 750 to 600℃.A stable performance at 400 mA·cm^(−2) and 700℃is achieved using 45%CO_(2)–45%CH_(4)–10%N_(2) for more than 400 h without carbon deposition,benefiting from the impregnated BCFN aerogel with a high specific surface area and water adsorbability.展开更多
Dispersion of multi-walled carbon nanotubes in poly(p-phenylene) composite exposed to toluene was experimentally investigated. 3 mg of multi-walled carbon nanotubes with nominal size of 20 nm was compounded with 30 ...Dispersion of multi-walled carbon nanotubes in poly(p-phenylene) composite exposed to toluene was experimentally investigated. 3 mg of multi-walled carbon nanotubes with nominal size of 20 nm was compounded with 30 mg of poly(p-phenylene) with the presence of terpineol as binding initiator. To investigate an optimal condition for homogenizing all constituents, ultrasonication with an output power of 750W was employed with compounding time of 3, 10, 20 and 30 min. With FTIR analyses, it could be confirmed that homogeneous composite of multi-walled carbon nanotubes and poly(p-phenylene) could be prepared. SEM analyses were also conducted to examine the dispersion of multi-walled carbon nanotubes in the polymer matrix. Then intrinsic electrical resistance of the composites after being exposed to toluene was also investigated. It was found that the composite film prepared with ultrasonication for 20 min could provide sufficiently sensitive response with respect to varied concentration of toluene.展开更多
A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graph...A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.展开更多
Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a...Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al2O3-CaO (Ni-Co/AC) catalyst and a conventional Ni/Al2O3 (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst.展开更多
Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and t...Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.展开更多
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金Funded by the National Sci-Tech Support Plan of China(No.2013BAJ10B05)Marine Interdisciplinary Research Guide Fund of Zhejiang University(No.2012HY003B)
文摘Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.
基金Funded by the National Natural Science Foundation of China (Nos.51808188, 52178202, 52108206)the Fundamental Research Funds for the Central Universities (No.B210201041)。
文摘Hybrid nanoSiO_(2) (HNS) modified cement pastes were explored as a kind of surface protection material (SPM).The carbonation resistance and mechanical properties of SPMs coated samples were tested.Thermogravimetric analysis (TGA),X-ray diffraction (XRD),scanning electron microscope (SEM),and mercury intrusion porosimetry (MIP) were further employed to evaluate the chemical composition and microstructure characteristics of SPM.Besides,thermodynamic modeling was adopted to simulate the changes in the phase assemblages of SPM under the carbonation process.The results showed that SPM with 1 wt% HNS could effectively enhance the carbonation resistance.The incorporation of HNS could densify the microstructure and refine the pore structure.Moreover,the thaumasite can be stable at ambient temperature with the addition of HNS,which is beneficial to maintain alkalinity under the carbonation process.
文摘Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.
基金This project was supported by the North Dakota Agricultural Experiment Station,North Dakota State University(FARG007858).
文摘Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for predicting change over time.Surface soil samples from six ecoregions of the United States were analyzed for permanganate oxidizable C(KMnO4-C)and mineralizable C pools.Variations of SOC ranged from 7.9 mg g^-1(Florida site)to 325 mg g^-1(Hawaii site).Mineralisable C pools and KMnO4-C were highest in soils from the Hawaii site.Mean annual precipitation explains SOC and resistant C pool variations.Clay content was related to mineralisable active C pools and bacterial abundance.Mean annual precipitation and clay content are potential variables for predicting changes in SOC pools at large spatial scales.
文摘Two types of low carbon MgO - C refractories with 6% graphite were prepared using microporous magnesiarich spinel (5 - 3 and 3 - 1 mm ) and fused magnesia (5 - 3 and 3 - 1 mm ) as coarse aggregates, respectively, fused magnesia ( ≤1 mm) as fine aggregate, magnesia powder (≤ 0. 088 mm ) , flake graphite powder ( ≤0. 088 mm), metal Al powder ( 〈0. 074 mm) as matrix, and phenol resin as binder. After curing at 220 ℃ and coke-embedded firing at 1 500 ℃ , the apparent porosity, cold crushing strength, cold modulus of rupture, permanent linear change on heating, thermal shock resistance and slag resistance of the specimens were studied comparatively. The results indicate that: ( 1 ) after curing at 220 ℃ and coke-embedded firing at 1 500 ℃, the specimen with microporous magnesia-rich spinel replacing fused magnesia has lower bulk density and higher apparent porosity than the common low car- bon MgO - C specimen. After curing at 220 ℃, the specimen with microporous aggregate has lower strength than common low carbon MgO - C specimen, but after coke-embedded firing at 1 500℃, it has higher strength and lower permanent linear change on heating; (2) low carbon MgO - C specimen using microporous magnesia-rich spinel to replace fused magnesia aggregate has better thermal shock resistance but worse slag resistance.
文摘Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in airto renderthefibresinfusiblebefore pyrolysisat1200℃underinertatmospheretoproduceC Sialloy( CSA) fibres. Theextentofstabili sation wasfoundto becriticalto the development of mechanicalstrength of thefibres which varied with heattreatmenttemperature, showing a maximum at 1200 ℃when thestrength was 1 4 1 6 GPa. Thesestrengthsareremarkably goodconsideringthelow modulus whichis duetothe quite high failurestrains. Thefibrescanshow excellentresistanceto oxidation if given an initialshortexposureto oxygen athigh temperature duetotheformation of an im perceptiblelayer of silica. CSAfibreshavethe advantagesof both carbon fibresand SiCfi bres,thusextended application areascan beenvisaged .
基金supported by the National Natural Science Foundation of China(52074149,52204346)the Key Project of Liaoning Science and Technology Education Department(LJKZ0287,2020LNZD07)+1 种基金and the State Key Laboratory of Marine Equipment Made of Metal Material and Application(Grant No.HGSKL-USTLN-2021-07)the University of Science and Technology Liaoning Graduate Science Innovation Project(LKDYC202230).
文摘Before and after heat treatment,0Cr15Ni5Cu3MoN stainless steel(SS)samples were immersed in sulfate-reducing bacteria(SRB)environment to study the effect of heat treatment on the antimicrobial properties of Cu-containing stainless steel.The effect of heat treatment on the corrosion resistance and antibacterial ability of 0Cr15Ni5Cu3MoN SS was studied by scanning electron microscopy,transmission electron microscopy,laser scanning confocal microscopy,and electrochemistry.The results show that 0Cr15Cu3 SS has better antibacterial properties with fewer bacteria adsorbed on the surface after heat treatment,and its corrosion resistance is significantly improved.Interestingly,on the 7th day of immersion,the corrosion resistance of the heat-treated stainless steel was lower than that of the rolled stainless steel.This was due to the fact that the rolled samples were protected by biofilm at this time,while the surface bacteria on the heat-treated samples died,resulting in the exposure of the substrate surface and thus reducing the corrosion resistance of the heat-treated samples.Thus,because of the strong bactericidal properties of the heat-treated Cu-containing stainless steel,the corrosion resistance of the samples suddenly decreases in the middle stage of corrosion,and this discovery provides a new view to study the corrosion process of Cu-containing stainless steel in the SRB environment.
基金Sponsored by National Natural Science Foundation of China(50527402)National Basic Research Program(973Program)of China(2011CB606306-2)
文摘The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different morphologies of Ti(C,N)precipitate in hot strips.It is found that the Ti(C,N)precipitate in hot strip using Path 2(put into asbestos box and air cooled)are finer and much more in quantity than that in hot strip using Path 1(held at 730℃ for 30min and furnace cooled).The morphology of Ti(C,N)precipitate in hot strip has great effect on recrystallization texture in the subsequent cold-rolled annealed sheet.γ-fiber texture of strong recrystallization is gained in coldrolled and annealed sheet came from Path 1.On the contrary,in the one came from Path 2,theγ-fiber texture is weak.This may be due to the pinning force of numerous fine Ti(C,N)precipitate which retard the growth of preferential nucleated{111}orientated grains.Annealed steel sheets in the test came from both paths have excellent fishscale resistance.
基金Funded by National Natural Science Funds of China(No.51173141)Natural Science Funds of Hubei Province,China(No.2014CFC1152)+1 种基金Science and Technology Research Program of Department of Education of Hubei Province,China(No.Q20122305)Funds of Hubei Key Laboratory of Automotive Power Train and Electronic Control(No.ZDK1201405)
文摘Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.
文摘This work aims at preparing SiAlON-bonded SiC products with high SiAlON contents.Silicon carbide fines,micropowders of Si,Al and alumina with different activities were premixed in a ball mill to obtain different composite micropowders.Then silicon carbide particles,the composite micropowders and binder were wet mixed.After shaping the specimens were fired under insulation from direct flame in a shuttle kiln at 1450℃in nitrogen atmosphere.The chemical composition,microstructure,pore size distribution and CO resistance of the prepared specimens were tested.The results showed that:after introducing high-activity micropowder additives the SiAlON content grows from 14.8 mass%to 23.5 mass%;the amount of unreacted alumina and silicon nitride in the specimens falls from 8.78 mass%to 1.79 mass%;micropores with size under 1m increase from 30%to 68%;CO resistance reaches level A.
文摘We report a wet curing system developed and made suitable for practical application to curing the interior and verticalconcrete surfaces of tunnel linings after the formwork has been removed. In this system, air is evacuated from the gap between the curing sheet and the concrete surface to create a close contact, and by supplying water to the space between the contacting surfaces, a water film is formed over the concrete surface. This enables the wet curing of vertical concrete surfaces and interior surfaces of tunnel linings after the formwork has been removed, a process that has to date been difficult. In this paper, the effects of wet curing on improving the durability of concrete are verified, and examples of the application of wet curing to actual structures are presented.
基金Funded by the National Natural Science Foundation of China(No.51403082)
文摘A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.
文摘Arthritis is an acute systemic disease of a joint accompanied by pain.In developed countries,it mainly causes disability among people over 50 years of age.Rheumatoid Arthritis is a type of arthritis that occurs commonly among elders.The incidence of arthritis is higher in females than in males.There is no permanent diagnosis method for arthritis,but if it was identified in the early stages based on the foot pressure,it can be diagnosed before attaining the critical stage of Rheumatoid Arthritis.The analysis and study of arthritis patients were done using design thinking methodology.Design thinking is a problem-solving methodology that is used tofind a solution for the identification of the early stage of arthritis.This process consists offive stages follows Empathy,Define,Ideate,Prototype,and Testing.To define the problem statement,the Empathy was done with the arthritis patients to know the difficulties faced by them.This paper proposes a measurement technique of early measurement of arthritis using a non-invasive technique.It helps us to detect arthritis using a foot pressure pad that was designed with piezoresistive material and the feature classification was done using Weka.
基金financially supported by the National Natural Science Foundation of China(Nos.52072134,52302255,and 52272205)the Key Research and Development Programs of Hubei Province(Nos.2021BCA149 and 2022BAA087)+1 种基金the Natural Science Foundation of Hubei Province(No.2021CFA072)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202304051001007).
文摘BaCe_(0.8)Fe_(0.1)Ni_(0.1)O_(3−δ)(BCFN)in a perovskite structure is impregnated consecutively by BCFN solution and BCFN suspension into a phase-inversion prepared NiO–Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)scaffold as an anode for solid oxide fuel cells(SOFCs)with on-cell dry reforming of methane(DRM).The whole pore surface of the scaffold is covered by small BCFN particles formed by BCFN solution impregnation;the large pores near the scaffold surface are filled by BCFN aerogels with a high specific surface area produced by BCFN suspension impregnation,which act as a catalytic layer for on-cell DRM.After reduction,the anode consists of a Ni–GDC scaffold and BCFN particles with exsolved FeNi3 nanoparticles.This BCFN-impregnated Ni–GDC anode has higher electrical conductivity,electrochemical activity,and resistance to carbon deposition,with which the cell shows maximum power densities between 1.44 and 0.92 W·cm^(−2) when using H_(2) and between 1.09 and 0.50 W·cm^(−2) when using CO_(2)–CH_(4) at temperatures ranging from 750 to 600℃.A stable performance at 400 mA·cm^(−2) and 700℃is achieved using 45%CO_(2)–45%CH_(4)–10%N_(2) for more than 400 h without carbon deposition,benefiting from the impregnated BCFN aerogel with a high specific surface area and water adsorbability.
基金supported by the Centennial Fund of Chula-longkorn UniversityAssoc.Prof. Mana Sriyuthsak for his suggestive and academic support insensor fabricationfinancial support from University of Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
文摘Dispersion of multi-walled carbon nanotubes in poly(p-phenylene) composite exposed to toluene was experimentally investigated. 3 mg of multi-walled carbon nanotubes with nominal size of 20 nm was compounded with 30 mg of poly(p-phenylene) with the presence of terpineol as binding initiator. To investigate an optimal condition for homogenizing all constituents, ultrasonication with an output power of 750W was employed with compounding time of 3, 10, 20 and 30 min. With FTIR analyses, it could be confirmed that homogeneous composite of multi-walled carbon nanotubes and poly(p-phenylene) could be prepared. SEM analyses were also conducted to examine the dispersion of multi-walled carbon nanotubes in the polymer matrix. Then intrinsic electrical resistance of the composites after being exposed to toluene was also investigated. It was found that the composite film prepared with ultrasonication for 20 min could provide sufficiently sensitive response with respect to varied concentration of toluene.
基金financial support of the project from the National Natural Science Foundation of China (Nos. 51571114 and 51401106)the Natural Science Foundation of Jiangsu Province (No. BK20130935)
文摘A series of silver-doped graphite-like carbon coatings was prepared on the surface of aluminum alloy using the magnetron sputtering method. The spontaneous escape behavior and inhibition mechanism of silver from graphite-like carbon coating were studied. The results showed that when the sample prepared with a 0.01-A current on the silver target was placed in an atmospheric environment for 0.5 h, an apparent silver escape phenomenon could be observed. However, the silver escape phenomenon was not observed for samples prepared with a 0.05-A current on the silver target if the sample was retained in a 10^(-1) Pa vacuum environment, even after 48 h. Compared with the sample placed in the atmospheric environment immediately after an ion plating process, the silver escape time lagged for 6 h. Nanometer-thick pure carbon coating coverage could effectively suppress silver escape. When the coating thickness reached700 nm, permanent retention of silver could be achieved in the silver-doped graphite-like carbon coating.As the silver residue content in the graphite-like carbon coating increased from 2.27 at.% to 5.35 at.%, the interfacial contact resistance of the coating decreased from 51mΩcm^2 to 6 mΩcm^2.
基金This work was financially supported by the National Nature Science Foundation of China(Grant Nos.51922040 and 51821004)the Fok Ying Tung Education Foundation(Grant No.161051)the Fundamental Research Funds for the Central Universities(Nos.2018ZD08 and 2020DF01).
文摘Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al2O3-CaO (Ni-Co/AC) catalyst and a conventional Ni/Al2O3 (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst.
基金Sponsored by National Natural Science Foundation of China(61271303)Fundamental Research Funds for CentralUniversities of China(FRF-TP-12-029A)
文摘Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.