Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of cli...Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.展开更多
An advanced carbon dioxide retrieval algo- rithm for satellite observations has been developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The algorithm is tested using Greenhouse gases Obser...An advanced carbon dioxide retrieval algo- rithm for satellite observations has been developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The algorithm is tested using Greenhouse gases Observing SATellite (GOSAT) LIB data and validated using the Total Column Carbon Observing Network (TCCON) measurements. The retrieved XCO2 agrees well with TCCON measurements in a low bias of 0.15 ppmv and RMSE of 1.48 ppmv, and captured the seasonal vari- ation and increasing of XCO2 in Northern and Southern Hemisphere, respectively, as other measurements.展开更多
The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the g...The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO_2 concentrations, several CO_2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO_2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO_2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO_2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO_2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth's surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.展开更多
基金funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040200)the National Key Research and Development Program of China(Grant No.2016YFA0600203)+1 种基金the National Natural Science Foundation of China(Grant Nos.41375035 and 31500402)the Chinese Academy of Sciences Strategic Priority Program on Space Science(Grant No.XDA04077300)
文摘Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
基金supported by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(XDA05040200)the National High-tech Research and Development Program(2011AA12A104)
文摘An advanced carbon dioxide retrieval algo- rithm for satellite observations has been developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The algorithm is tested using Greenhouse gases Observing SATellite (GOSAT) LIB data and validated using the Total Column Carbon Observing Network (TCCON) measurements. The retrieved XCO2 agrees well with TCCON measurements in a low bias of 0.15 ppmv and RMSE of 1.48 ppmv, and captured the seasonal vari- ation and increasing of XCO2 in Northern and Southern Hemisphere, respectively, as other measurements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325204, 41421001)the National High-tech R&D Program (Grant No. 2013AA122003)the National Key Technologies R&D Program (Grant No. 2013BACO3B05)
文摘The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO_2 concentrations, several CO_2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO_2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO_2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO_2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO_2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth's surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.