期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Emission-side drivers affecting carbon neutrality based on vegetation carbon sequestration:Evidence from China
1
作者 Han Wang 《Chinese Journal of Population,Resources and Environment》 2024年第1期87-97,共11页
To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including so... To address climate change,the world needs deep decarbonization to achieve carbon neutrality(CN),which implies net-zero human-caused CO_(2) emissions in the atmosphere.This study used emission-side drivers,including socioeconomic and net primary productivity(NPP)-based factors,to determine the changes in CN based on vegetation carbon sequestration in the case of China during 2001-2015.Spatial exploratory analysis as well as the combined use of production-theoretical decomposition analysis(PDA)and an econometric model were also utilized.We showed that CN was significantly spatially correlated over the study period;Yunnan,Heilongjiang,and Jilin presented positive spatial autocorrelations,whereas Guizhou showed a negative spatial autocorrelation.More than half of CN declined over the period during which potential energy intensity(PEIE)and energy usage technological change were the largest negative and positive drivers for increasing CN.PEIE played a significantly negative role in increasing CN.We advise policymakers to focus more on emission-side drivers(e.g.,energy intensity)in addition to strengthening NPP management to achieve CN. 展开更多
关键词 carbon neutrality Vegetation carbon sequestration Production-theoretical decomposition analysis Econometric model
下载PDF
Carbon sequestration rate,nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system 被引量:1
2
作者 Nafiu Garba HAYATU LIU Yi-ren +7 位作者 HAN Tian-fu Nano Alemu DABA ZHANG Lu SHEN Zhe LI Ji-wen Haliru MUAZU Sobhi Faid LAMLOM ZHANG Hui-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2848-2864,共17页
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical... Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China. 展开更多
关键词 carbon sequestration chemical fertilizer long term organic manure nitrogen use efficiency paddy rice
下载PDF
Differences in CO_(2)-Water-Rock Chemical Reactions among ’Sweet Spot’ Reservoirs:Implications for Carbon Sequestration
3
作者 YANG Leilei SONG Ziyang +5 位作者 LIU Yi WEI Guo ZHANG Xing MO Chenchen FENG Bo LI Yaohua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期972-985,共14页
The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and trans... The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and transformation,leading to the local corrosion or blockage of reservoirs,have a significant influence on recovery.In this study,a combination of high-temperature and high-pressure laboratory experiments and coupled temperature/fluid-chemistry multifield numerical simulations are used to investigate CO_(2)-water-rock reactions under various reservoir conditions in the upper and lower ’sweet spots’,to reveal the mechanisms underlying CO_(2)-induced mineral dissolution,precipitation and transformation.In addition,we quantitatively calculated the evolution of porosity over geological timescales;compared and analyzed the variability of CO_(2) transformation in the reservoir under a variety of temperature,lithology and solution conditions;and identified the main factors controlling CO_(2)-water-rock reactions,the types of mineral transformation occurring during long-term CO_(2) sequestration and effective carbon sequestration minerals.The results demonstrate that the main minerals undergoing dissolution under the influence of supercritical CO_(2) are feldspars,while the main minerals undergoing precipitation include carbonate rock minerals,clay minerals and quartz.Feldspar minerals,especially the initially abundant plagioclase in the formation,directly affects total carbon sequestration,feldspar-rich clastic rocks therefore having considerable sequestration potential. 展开更多
关键词 CO_(2) water-rock reactions mineral transformation carbon sequestration
下载PDF
The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China
4
作者 GAO Song-juan LI Shun +1 位作者 ZHOU Guo-peng CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2233-2247,共15页
Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclea... Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclear.Therefore,we combined the datasets from long-term multisite experiments with a meta-analysis approach to quantify the potential of GM to increase the CS and reduce the CF of paddy soils in southern China.Compared with the fallow-rice practice,the GM-rice practice increased the soil C stock at a rate of 1.62 Mg CO_(2)-eq ha^(-1) yr^(-1) and reduced chemical N application by 40%with no loss in the rice yield.The total CF varied from 7.51 to 13.66 Mg CO_(2)-eq ha^(-1) yr^(-1) and was dominated by CH_(4) emissions(60.7-81.3%).GM decreased the indirect CF by 31.4%but increased the direct CH_(4) emissions by 19.6%.In the low and high CH_(4) emission scenarios,the CH_(4) emission factors of GM(EF_(gc))were 5.58 and 21.31%,respectively.The greater soil CS offset the increase in GM-derived CF in the low CH_(4) scenario,but it could not offset the CF increase in the high CH_(4) scenario.A trade-off analysis also showed that GM can simultaneously increase the CS and reduce the total CF of the rice production system when the EF_(gc) was less than 9.20%.The variation in EF_(gc) was mainly regulated by the GM application rates and water management patterns.Determining the appropriate GM application rate and drainage pattern warrant further investigation to optimize the potential of the GM-rice system to increase the CS and reduce the total CF in China. 展开更多
关键词 green manure paddy soil soil carbon sequestration carbon footprint
下载PDF
Quantification of Above-Ground Biomass and Carbon Sequestration Potential of Roadside Trees in the Plateau Department of Benin Republic
5
作者 Dende Ibrahim Adekanmbi Igor Armand Yevide +4 位作者 Kafui Inès Edna Deleke Koko Adandé Belarmain Fandohan Basile Sègbégnon Michoagan Moussahoudou Issa Agossou Bruno Djossa 《Journal of Geoscience and Environment Protection》 2023年第9期20-27,共8页
Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for... Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration. 展开更多
关键词 Above-Ground Biomass Allometric Model carbon sequestration Roadside Trees Bénin Republic
下载PDF
The potential for an old-growth forest to store carbon in the topsoil:A case study at Sasso Fratino,Italy
6
作者 Tommaso Chiti Nicola Benilli +1 位作者 Giovanni Mastrolonardo Giacomo Certini 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期23-32,共10页
There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of ... There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of information on their actual potential for C sequestration.To further understand this,soil organic carbon(SOC)was measured in one of Italy's best-preserved old-growth forests,the Sasso Fratino Integral Nature Reserve.This reserve is on the World Heritage List along with other ancient beech forests of Europe,and it is virtually untouched due to the steepness of the terrain,even before legal constraints were imposed.Although the sandstone-derived soils are often shallow,they are rich in organic matter.However,no quantification had been carried out.By systematically sampling the topsoil across the forest,we accurately determined the average amount of SOC(62.0±16.9 Mg ha^(–1))and nitrogen(4.0±1.2 Mg ha^(–1))in the top 20 cm.Using the CENTURY model,future dynamics of SOC stocks were predicted to 2050 according to two climate scenarios,A1F1 and B2,the first of high concern and the second more optimistic.The model projected an increase of 0.2 and 0.3 Mg ha^(–1)a^(–1)by 2030 under the A1F1 and B2 scenarios,respectively,suggesting that the topsoil in old-growth forests does not reach equilibrium but continues accumulating SOC.However,from 2030 to 2050,a decline in SOC accumulation is predicted,indicating SOC net loss at high altitudes under the worst-case scenario.This study confirms that soils in oldgrowth forests play a significant role in carbon sequestration.It also suggests that climate change may affect the potential of these forests to store SOC not only in the long term but also in the coming years. 展开更多
关键词 carbon sequestration CENTURY model Climate change Forest soil Soil nitrogen
下载PDF
Forestry Interventions and Groundwater Recharge, Sediment Control and Carbon Sequestration in the Krishna River Basin
7
作者 Humachadakatte Ramachandra swamy Prabuddha Madan Prasad Singh +6 位作者 Prathima Purushotham Baragur Neelappa Divakara Tattekere Nanjappa Manohara Basavarajaiah Shivamma Chandrashekar Namasivayam Ravi Nimmala Mohan Reddy Ombir Singh 《Open Journal of Forestry》 2023年第4期368-395,共28页
It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing ini... It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing initiative called “Rejuvenation of Krishna River through Forestry Interventions” aims to contribute to the overall river rejuvenation program in the country. In this context, the effects of forestry interventions on the Krishna River will be evaluated based on water quantity, water quality, and the potential for carbon sequestration through plantation efforts. To assess the outcomes of this study, various methodologies such as Soil Conservation Service Curve Number (SCS-CN), Central Ground Water Board (CGWB) and Intergovernmental Panel on Climate Change (IPCC) have been utilized to estimate water savings, reduction in sedimentation, and carbon sequestration potential within the Krishna basin. The projected results indicate that the implementation of forestry plantations and soil and moisture conservation measures in the Krishna River rejuvenation program could lead to significant improvements. Specifically, the interventions are expected to enhance water recharge by 400.49 million cubic meters per year, reduce sedimentation load by 869.22 cubic meters per year, and increase carbon sequestration by 3.91 lakh metric tonnes per year or 14.34 lakh metric tonnes of CO<sub>2</sub> equivalent. By incorporating forestry interventions into the Krishna riverscape, it is anticipated that the quality and quantity of water flowing through the river will be positively impacted. These interventions will enhance water infiltration, mitigate soil erosion, and contribute to an improved vegetation cover, thereby conserving biodiversity. Moreover, they offer additional intangible benefits such as addressing climate change concerns through enhanced carbon sequestration potential along the entire stretch of riverine areas. 展开更多
关键词 Forestry Interventions Krishna River Basin Sediment Control Water Recharge carbon sequestration
下载PDF
Spatio-temporal variations in organic carbon density and carbon sequestration potential in the topsoil of Hebei Province, China 被引量:5
8
作者 CAO Xiang-hui LONG Huai-yu +4 位作者 LEI Qiu-liang LIU Jian ZHANG Ji-zong ZHANG Wen-ju WU Shu-xia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第11期2627-2638,共12页
Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of ... Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups. 展开更多
关键词 carbon sequestration SOC density spatial variation TOPSOIL
下载PDF
Moisture regime influence on soil carbon stock and carbon sequestration rates in semi-arid forests of the National Capital Region, India 被引量:2
9
作者 Urvashi Tomar Ratul Baishya 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2323-2332,共10页
Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evalua... Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evaluated variations of soil carbon stock in semi-arid forests in India under diff erent moisture regimes.Soil organic carbon(SOC)and soil inorganic carbon(SIC)stocks were determined in diff erent moisture regimes i.e.monsoon,post-monsoon,winter and pre-monsoon seasons at 0–10 and>10–20 cm depths.SOC stock showed signifi cant variations under different moisture regimes.The highest SOC stock was during winter(22.81 Mg C ha−1)and lowest during the monsoon season(2.34 Mg C ha−1)among all the ridge forests under study.SOC and SIC stock under diff erent moisture regimes showed signifi cant negative correlation with soil moisture(p<0.05),as a sudden increase in soil moisture after rainfall results in an increase in carbon loss due to microbial decomposition of accumulated carbon during the dry period.There was an increase in annual SOC stock and a decrease(or no change in some cases),in SIC stock at both the depths during the study period.The SOC and SIC sequestration rates were estimated as any increase/decrease in the respective stock during each successive year.SOC sequestered ranged between 0.046 and 0.741 Mg C ha−1 y−1.Similarly,SIC sequestration ranged between 0.013 and 0.023 Mg C ha−1 y−1 over all ridge forests up to 20 cm depth.The Delhi ridge forests,which accounts to 0.007%of the semi-arid regions of India,contribute 0.25–0.32%of the national potential(semi-arid region)for SOC sequestration up to 20 cm depth.The estimates of the rate of C sequestration in this study provide a realistic image of carbon dynamics under present climatic conditions of semi-arid forests,and could be used in developing a database and formulating new strategies for carbon dioxide mitigation by enhancing soil C sequestration rates. 展开更多
关键词 Soil organic carbon Soil inorganic carbon carbon sequestration Moisture regime Semi-arid forests
下载PDF
Carbon Sequestration in Soil Aggregates under Different Cropping Patterns of Bangladesh 被引量:1
10
作者 Md. Sadiqul Amin Md. Zulfikar Khan +1 位作者 Tutul Laskar Sheikh Mohammad Fazle Rabbi 《Open Journal of Soil Science》 2020年第10期459-485,共27页
Land use change and cropping patterns are important factors for controlling carbon sequestration in soils and they may also change the relative importance of different mechanisms of soil organic matter stabilization. ... Land use change and cropping patterns are important factors for controlling carbon sequestration in soils and they may also change the relative importance of different mechanisms of soil organic matter stabilization. The study was conducted to investigate the state of carbon sequestration in soil aggregates under different cropping patterns of Khulna, Jessore and Chapainawabganj districts in Bangladesh. Thirty-six soil samples were collected from (0 - 100 cm depth) above mentioned regions of three physiographic regions: Ganges Meander Floodplain, Ganges Tidal Floodplain and High Barind Tract. The texture of the samples varied within three soil texture groups, Silt Loam, Silty Clay Loam and Silty Clay. The highest NSI value (0.89) was found under Wheat-Fallow-T. Aman cropping pattern in Silty Clay soils (sample No 15) and lowest value (0.59) was found Vegetables/Mustard-Fallow-T. Aman cropping pattern in Silt Loam soils (sample No 17). The highest value (735.20 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">&bull;</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>1</sup>) of active C was observed under Chickpea/mustard-T. Aman (Sample No 31) and the lowest value (619.23 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">&bull;</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>1</sup>) was found in case of Wheat-Fallow-T. Aman cropping pattern (Sample No 30). The highest SOC stock (1.62 Kg C m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>2</sup>) was found in Silty Clay Loam soil under Mungbean/Ash gourd-T. Aman cropping pattern (Sample no 4) and the lowest SOC stock (0.35 Kg C m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>2</sup>) was found in Silt Loam soil under Cauliflower/Pumkin/Spinach-T. Aman Cropping pattern (Sample No 2). Soil organic carbon associated with different size aggregates was the highest (3.14%) under Mungbean/Ash gourd-T. Aman (Sample No 20) and was the lowest (0.36%) under Cauliflower/Pumkin/Spinach-T. Aman cropping pattern (Sample No 2). Organic carbon content in aggregate size ranges > 2000 μm (SOC1), 2000 - 250 μm (SOC2), 250-53 μm (SOC3), and <53 μm (SOC4) varied from 0.36% - 1.90%, 0.52% - 2.10%, 0.50% - 2.60% and 0.50% - 1.62%, respectively. The percentages of SOC associated with <53 μm aggregates were higher than those of >2000 μm, 2000 - 250 μm and 250 - 53 μm, aggregates. Significant positive correlations were found between SOC stock and SOC1, SOC stock and SOC2, SOC stock and SOC3, SOC stock and SOC4. 展开更多
关键词 carbon sequestration carbon Stock Soil Aggregate Cropping Patterns Climate Change
下载PDF
Carbon Sequestration Service of a Ramsar Site: A Conservation-Role Model for Defying Developmental Pressure in the Middle of a Rapidly Expanding City 被引量:1
11
作者 Abdullah Sulaiman Al-Nadabi Hameed Sulaiman 《Open Journal of Forestry》 2021年第4期381-397,共17页
Mangroves in coastal cities are under threat due to development pressures. However, mangrove ecosystems can serve as a potential carbon sink for mitigating the impacts of climate change. The main objective of this stu... Mangroves in coastal cities are under threat due to development pressures. However, mangrove ecosystems can serve as a potential carbon sink for mitigating the impacts of climate change. The main objective of this study was to estimate the carbon sequestration potential of mangroves in the Al-Qurm natural reserve, Muscat, Oman. The reserve was classified into three distinct zones and was estimated through field measurement and remote sensing techniques. The study found that each zone sequesters varying levels of carbon. The highest mean carbon stock was measured in the landward zone (20.2 ± 0.3 kg&#8729C/m<sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), followed by the middle zone (8.7 ± 0.4 kg&#8729C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) and seaward zone (5.8 ± 0.8 kg<span style="font-family:Verdana;white-space:normal;">&#8729</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), respectively. The carbon sequestration rate of the sediment range </span><span style="font-family:Verdana;">was </span><span style="font-family:;" "=""><span style="font-family:Verdana;">between 5.0 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">&#8729</span>year - 12.5 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">&#8729</span>year. Normalized difference vegetation index (NDVI) derived from above-ground biomass showed a positive relationship (r = 0.73) with biomass measured in the field. However, the average above-ground carbon was underestimated (6.3 kg<span style="font-family:Verdana;white-space:normal;">&#8729</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) than the above-ground field measurement (7.0 kg<span style="font-family:Verdana;white-space:normal;">&#8729</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">). This 0.82 km</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> of the natural reserve was estimated to sequester approximately 9512 tonnes of carbon equivalent to 0.035 Mt of CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">e. This highlights the importance of conserving this natural reserve, despite a growing demand for land use in and around the reserve for development needs.</span></span> 展开更多
关键词 Biomass carbon sequestration MANGROVES Remote Sensing Cities
下载PDF
Carbon Sequestration under Warm Season Turfgrasses in Home Lawns 被引量:1
12
作者 Said A. Hamido E. A. Guertal C. Wesley Wood 《Journal of Geoscience and Environment Protection》 2016年第9期53-63,共12页
Turfgrass cover in the U.S. is expanding because of increasing urbanization and the addition of approximately 675,000 ha of residential property every year. Despite its large-scale presence in the urban ecosystem, the... Turfgrass cover in the U.S. is expanding because of increasing urbanization and the addition of approximately 675,000 ha of residential property every year. Despite its large-scale presence in the urban ecosystem, the role of turfgrasses in carbon (C) cycling in home lawns in southeastern U.S. soils has not been documented, and studies with warm-season turf grasses are lacking. The objective of this study was to estimate carbon (C) sequestration in soil as affected by turfgrass species, including: bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy), centipede grass (Erecholmoa ophroides (Munroe) Hack.), and zoysiagrass (Zoysia spp.). The study was initiated in the winter of 2012 and conducted for two years on a loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludult) soil. Eighteen lawns were sampled twice per year: six lawns of each grass species, with the harvested grasses separated into stems, above ground biomass (verdure) + thatch, and belowground roots. Soil samples (0 - 5, 5 - 10, and 10 - 20 cm) were also collected. Total C concentration was determined on finely ground-dried samples by combustion. Turfgrass species, season and years of sampling were all significantly (P ≤ 0.05) affected by C sequestration. Zoysiagrass had the highest mean levels of sequestered C, with a value of 5.54 ± 0.21, compared to 2.09 ± 0.11 and 4.23 ± 0.14 Mg·ha<sup>-1</sup>·yr<sup>-1</sup> under bermudagrass and centipedegrass at the end of the study, respectively. This work indicates that turfgrass home lawns may be an important contribution to the global carbon sequestration level. 展开更多
关键词 carbon sequestration Soil Organic carbon BERMUDAGRASS Centipedegrass Zoysiagrass
下载PDF
Total Carbon Stock and Potential Carbon Sequestration Economic Value of Mukogodo Forest-Landscape Ecosystem in Drylands of Northern Kenya 被引量:1
13
作者 Nereoh C. Leley David K. Langat +2 位作者 Abdalla K. Kisiwa Geoffry M. Maina Meshack O. Muga 《Open Journal of Forestry》 2022年第1期19-40,共22页
Carbon sequestration is one of the important ecosystem services provided by forested landscapes. Dry forests have high potential for carbon storage. However, their potential to store and sequester carbon is poorly und... Carbon sequestration is one of the important ecosystem services provided by forested landscapes. Dry forests have high potential for carbon storage. However, their potential to store and sequester carbon is poorly understood in Kenya. Moreover, past attempts to estimate carbon stock have ignored drylands ecosystem heterogeneity. This study assessed the potential of Mukogodo dryland forest-landscape in offsetting carbon dioxide through carbon sequestration and storage. Four carbon pools (above and below ground biomass, soil, dead wood and litter) were analyzed. A total of 51<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(400</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m<sup>2</sup>) sample plots were established using stratified-random sampling technique to estimate biomass across six vegetation classes in three landscape types (forest reserve, ranches and conservancies) using nested-plot design. Above ground biomass was determined using generalized multispecies model with diameter at breast height, height and wood density as variables. Below ground, soil, litter and dead wood biomass;carbon stocks and carbon dioxide equivalents (CO<sub>2eq</sub>) were estimated using secondary information. The CO<sub>2eq</sub> was multiplied by current prices of carbon trade to compute carbon sequestration value. Mean ± SE of biomass and carbon was determined across vegetation and landscape types and mean differences tested by one-way Analysis of Variance. Mean biomass and carbon was about 79.15 ± 40.22</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TB</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha</span></span></span><span style="font-size:10px;"><span style="vertical-align:super;">-</span></span><span><span><span style="font-family:;" "=""><sup>1</sup> and 37.25 ± 18.89</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">-</span>1</sup> respectively. Cumulative carbon stock was estimated at 682.08</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">&#45;</span>1</sup>;forest reserve (251.57</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup>&#45;1</sup>) had significantly high levels of carbon stocks compared to ranches (209.78</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>) and conservancies (220.73</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>, <i>P</i> = 0.000). Further, closed forest significantly contributed to the overall biomass and carbon stock (58%). The carbon sequestration potential was about 19.9MTCO<sub>2eq</sub> with most conservative worth of KES 39.9B (US$40M) per annum. The high carbon stock in the landscape shows the potential of dryland ecosystems as carbon sink for climate change mitigation. However, for communities to benefit from bio-carbon funds in future, sustainable landscape management and restorative measures should be practiced to enhance carbon storage and provision of other ecosystem services.</span></span></span> 展开更多
关键词 carbon sequestration carbon Stock Economic Value Dryland Forest-Landscape Kenya
下载PDF
Evaluation of Carbon Sequestration Potential of Soils―What Is Missing? 被引量:1
14
作者 Haruna Adamu Yuguda Abubakar Umar +1 位作者 Hannatu Akanang Ahmed Sabo 《Journal of Geoscience and Environment Protection》 2021年第8期39-47,共9页
It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmo... It is no doubt that soils are among the Earth’s largest terrestrial reservoirs of carbon pool and hold potential for its sequestration and thus, soils can serve as potential way of mitigating the ever-increasing atmospheric CO<sub>2</sub> concentration. However, the stability and flux of soil organic carbon are affected in response to changes that are being driven by forms of environmental and anthropogenic factors. Therefore, to establish carbon sequestration potential of soils, an in-depth scientific evaluation that would provide mapping of and speciation of carbon chemical forms, as well as factors influencing the persistence of carbon in soils are key to the process which are beyond quantitative measurements that are conventionally implemented under different land use and/or soil management. This involves soil chemistry, physics, biology, and microbiology. Hence, this short review communication highlights portions of soil chemistry and physics as well as soil biology and microbiology that have not been given attention in determining and/or underpinning decisions on carbon sequestration potential of soils. 展开更多
关键词 SOIL carbon sequestration Potential Climate Change MITIGATION
下载PDF
Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy 被引量:1
15
作者 ZOU Caineng WU Songtao +7 位作者 YANG Zhi PAN Songqi WANG Guofeng JIANG Xiaohua GUAN Modi YU Cong YU Zhichao SHEN Yue 《Petroleum Exploration and Development》 2023年第1期210-228,共19页
Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO... Carbon dioxide storage and utilization has become an inevitable trend and choice for sustainable development under the background of global climate change and carbon neutrality.Carbon industry which is dominated by CO_(2) capture,utilization and storage/CO_(2) capture and storage(CCUS/CCS)is becoming a new strategic industry under the goal of carbon neutrality.The sustainable development of carbon industry needs to learn from the experiences of global oil and gas industry development.There are three types of“carbon”in the earth system.Black carbon is the CO_(2) that has not been sequestered or used and remains in the atmosphere for a long time;grey carbon is the CO_(2) that has been fixed or permanently sequestered in the geological body,and blue carbon is the CO_(2) that could be converted into products for human use through biological,physical,chemical and other ways.The carbon industry system covers carbon generation,carbon capture,carbon transportation,carbon utilization,carbon sequestration,carbon products,carbon finance,and other businesses.It is a revolutionary industrial field to completely eliminate“black carbon”.The development of carbon industry technical system takes carbon emission reduction,zero carbon,negative carbon and carbon economy as the connotation,and the construction of a low-cost and energy-efficient carbon industry system based on CCUS/CCS are strategic measures to achieve the goal of carbon neutrality and clean energy utilization globally.This will promote the“four 80%s”transformation of China's energy supply,namely,to 2060,the percentage of zero-carbon new energy in the energy consumption will be over 80%and the CO_(2) emission will be decreased by 80%to ensure the carbon emission reduction of total 80×10^(8) t from the percentage of carbon-based fossil energy in the energy consumption of over 80%,and the percentage of CO_(2) emission from energy of over 80%in 2021.The carbon industry in China is facing three challenges,large CO_(2) emissions,high percentage of coal in energy consumption,and poor innovative system.Three strategic measures are proposed accordingly,including:(1)unswervingly develop carbon industrial system and ensure the achievement of carbon neutrality as scheduled by 2060;(2)vigorously develop new energy sources and promote a revolutionary transformation of China’s energy production and consumption structure;(3)accelerate the establishment of scientific and technological innovation system of the whole CO_(2) industry.It is of great significance for continuously optimization of ecological environment and construction of green earth and ecological earth to develop the carbon industry system,utilize clean energy,and achieve the strategic goal of global carbon neutrality. 展开更多
关键词 carbon industry system carbon neutrality carbon sequestration green earth carbon footprint carbon trade peak carbon dioxide emission dual carbon target
下载PDF
Prioritizing woody species for the rehabilitation of arid lands in western Iran based on soil properties and carbon sequestration
16
作者 Masoud BAZGIR Reza OMIDIPOUR +3 位作者 Mehdi HEYDARI Nasim ZAINALI Masoud HAMIDI Daniel C DEY 《Journal of Arid Land》 SCIE CSCD 2020年第4期640-652,共13页
Plants are an important component in many natural ecosystems. They influence soil properties, especially in arid ecosystems. The selection of plant species based on their adaptations to site conditions is essential fo... Plants are an important component in many natural ecosystems. They influence soil properties, especially in arid ecosystems. The selection of plant species based on their adaptations to site conditions is essential for rehabilitation of degraded sites and other construction sites such as check-dams. Other factors to be considered in species selection include their effects on soil properties and their abilities to meet other management objectives. The purpose of this study was to assess the effects of native(Populus euphratica Oliv. and Tamarix ramosissima Ledeb.) and introduced(Eucalyptus camaldulensis Dehnh. and Prosopis juliflora(Swartz) DC.) woody species on soil properties and carbon sequestration(CS) in an arid region of Iran. Soil sampling was collected at three soil depths(0–10, 10–20 and 20–30 cm) at the sites located under each woody species canopy and in an open area in 2017. Soil physical-chemical property was analyzed in the laboratory. The presence of a woody species changed soil characteristics and soil CS, compared with the open area. For example, the presence of a woody species caused a decrease in soil bulk density, of which the lowest value was observed under E. camaldulensis(1.38 g/cm^3) compared with the open area(1.59 g/cm^3). Also, all woody species significantly increased the contents of soil organic matter and total nitrogen, and introduced species had more significant effect than native species. The results showed that CS significantly increased under the canopy of all woody species in a decreasing order of P. euphratica(9.08 t/hm^2)>E. camaldulensis(8.37 t/hm^2)>P. juliflora(5.20 t/hm^2)>T. ramosissima(2.93 t/hm^2)>open area(1.33 t/hm^2), thus demonstrating the positive effect of a woody species on CS. Although the plantation of non-native species had some positive effects on soil properties, we recommend increasing species diversity in plantations of native and introduced woody species to provide more diversity for the increased ecosystem services, resilience, health and long-term productivity. 展开更多
关键词 arid ecosystem carbon sequestration degraded soil RESTORATION REFORESTATION soil management
下载PDF
Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis
17
作者 CHENG Caifeng LI Min +4 位作者 XUE Zhenshan ZHANG Zongsheng LYU Xianguo JIANG Ming ZHANG Hongri 《Chinese Geographical Science》 SCIE CSCD 2020年第3期483-492,共10页
Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestrati... Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands(Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m^2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh(247.7 g/(m^2·yr)) > mangrove(229.8 g/(m^2·yr)) > freshwater marsh(196.7 g/(m^2·yr)) > peatland(76.9 g/(m^2·yr)). Carbonsq was positively related to mean annual temperature(AMT) and annual precipitation(Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types. 展开更多
关键词 global wetlands carbon sequestration temperature and precipitation NUTRIENT PHOSPHORUS
下载PDF
Discussion on the limit recovery factor of carbon dioxide flooding in a permanent sequestration scenario
18
作者 LIAO Guangzhi HE Dongbo +9 位作者 WANG Gaofeng WANG Liangang WANG Zhengmao SU Chunmei QIN Qiang BAI Junhui HU Zhanqun HUANG Zhijia WANG Jinfang WANG Shengzhou 《Petroleum Exploration and Development》 CSCD 2022年第6期1463-1470,共8页
Based on practices of CO_(2) flooding tests in China and abroad,the recovery factor of carbon dioxide capture,utilization in displacing oil and storage(CCUS-EOR)in permanent sequestration scenario has been investigate... Based on practices of CO_(2) flooding tests in China and abroad,the recovery factor of carbon dioxide capture,utilization in displacing oil and storage(CCUS-EOR)in permanent sequestration scenario has been investigated in this work.Under the background of carbon neutrality,carbon dioxide injection into geological bodies should pursue the goal of permanent sequestration for effective carbon emission reduction.Hence,CCUS-EOR is an ultimate development method for oil reservoirs to maximize oil recovery.The limit recovery factor of CCUS-EOR development mode is put forward,the connotation differences between it and ultimate recovery factor and economically reasonable recovery factor are clarified.It is concluded that limit recovery factor is achievable with mature supporting technical base for the whole process of CCUS-EOR.Based on statistics of practical data of CO_(2) flooding projects in China and abroad such as North H79 block CO_(2) flooding pilot test at small well spacing in Jilin Oilfield etc.,the empirical relationship between the oil recovery factor of miscible CO_(2) flooding and cumulative CO_(2) volume injected is obtained by regression.Combined with the concept of oil production rate multiplier of gas flooding,a reservoir engineering method calculating CO_(2) flooding recovery factor under any miscible degree is established by derivation.It is found that when the cumulative CO_(2) volume injected is 1.5 times the hydrocarbon pore volume(HCPV),the relative deviation and the absolute difference between the recovery percentage and the limit recovery factor are less than 5%and less than 2.0 percentage points respectively.The limit recovery factor of CCUS-EOR can only be approached by large pore volume(PV)injection based on the technology of expanding swept volume.It needs to be realized from three aspects:large PV injection scheme design,enhancing miscibility degree and continuously expanding swept volume of injected CO_(2). 展开更多
关键词 carbon neutrality permanent carbon sequestration CCUS-EOR limit recovery factor cumulative CO_(2)volume injected swept volume miscibility degree
下载PDF
Soil Carbon Sequestrations in Forest Soils in Relation to Parent Material and Soil Depth in South-Eastern Nigeria
19
作者 Chinonso Millicent Chris-Emenyonu Emmanuel Uzoma Onweremadu +2 位作者 John Didacus Njoku Chioma Mildred Ahukaemere Benarden Ngozi Aririguzo 《American Journal of Climate Change》 2020年第4期400-409,共10页
<span style="white-space:normal;">There has been increased interest in soil organic carbon in recent times because of its role in carbon sequestration. Different parent materials affect soil properties... <span style="white-space:normal;">There has been increased interest in soil organic carbon in recent times because of its role in carbon sequestration. Different parent materials affect soil properties and hence will influence how much carbon is sequestered by soil. The study was conducted in June 2019 to investigate soil carbon stock in forest soils with respect to their parent materials in three States in South-eastern Nigeria. Sampling was aided by the location map of the area and free soil survey method was used to locate sampling points. 0ne profile was dug in each location and described using the Food and Agricultural Organization guideline. A total of twelve soil samples were collected and analyzed for selected properties. Results showed that sand content was significantly higher in soils under coastal plain sands (851.96 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>1</sup><span style="white-space:normal;">) and was lowest in soils of Imo clay shale (605.60 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;">&#8722;1</sup><span style="white-space:normal;">). Clay content was higher in soils of Imo clay shale (277.34 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>1</sup><span style="white-space:normal;">) and was lowest in coastal plain sand (118.80 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>1</sup><span style="white-space:normal;">). Silt and clay had moderate variation in coastal plain sand (>15 ≤ 35%) and high variations in Asu River and Imo clay shale (CV > 35%). The soils studied were generally acidic with values ranging (3.52) in soils formed from coastal plain sand, followed by forest soils of Imo clay shale (3.64) and Asu river group (3.85). Soil organic carbon decreased with increase in soil depth in all soil parent materials studied. Mean values ranged from 6.14 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>1</sup><span style="white-space:normal;"> in soil underlain by coastal plain sand to 10.62 g<span style="white-space:nowrap;">·</span>kg</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>1</sup><span style="white-space:normal;">) in soils of Imo clay shale. Soil carbon sequestered under the three different parent materials ranged from 1575 - 4676.41 (g<span style="white-space:nowrap;">·</span>cm</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>2</sup><span style="white-space:normal;">). Also, soil depth had a notable impact on carbon sequestration with values ranging from 1529.42 - 4374.0541 (g<span style="white-space:nowrap;">·</span>cm</span><sup style="white-space:normal;"><span style="white-space:nowrap;">&#8722;</span>2</sup><span style="white-space:normal;">) and the thicker the horizon, the more carbon sequestered. Hence, the study concluded that more carbon is sequestered in the subsurface horizons of the soil pedons than in the epipedons.</span> 展开更多
关键词 carbon sequestration FOREST SOILS Parent material Soil Depth
下载PDF
Carbon Sequestration Potential of Tree Species at Isabela State University Wildlife Sanctuary (ISUWS), Cabagan, Isabela, Philippines
20
作者 Julius G. Pascua Gerryc P. Alfonso Rocel S. Galicia 《Open Journal of Ecology》 2021年第5期462-473,共12页
This study is conducted to assess the amount of carbon stored in the above-ground biomass of the tree species at the Isabela State University Wildlife Sanctuary (ISUWS). A total of 34 different tree species were found... This study is conducted to assess the amount of carbon stored in the above-ground biomass of the tree species at the Isabela State University Wildlife Sanctuary (ISUWS). A total of 34 different tree species were found with 285 individuals were identified with a total of 47.50 t/ha Carbon stock and 164.09 t/ha of accumulated CO<sub>2</sub>. It was found in the study that<em> Alstonia scholaris</em> contains the largest amount of above-ground biomass (AGB) with a mass of 20.97 t/ha and Carbon stock of 9.44 t/ha followed by <em>Samanea saman</em> with a mass of 13.40 t/ha and Carbon stock of 6.03 t/ha. Based on the result and conclusion of this investigation, the following recommendations were drawn: Conduct a study concerning the carbon emission of the area to determine the relationship with its carbon sequestration potential;and conduct tree planting activity to open areas in the study site to increase its carbon stock potential and fully serve the purpose of the area as a wildlife sanctuary. 展开更多
关键词 carbon sequestration Potential Tree Species Isabela State University Wildlife Sanctuary
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部