Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c...Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.展开更多
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t...Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.展开更多
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a...Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.展开更多
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ...Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.展开更多
Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The h...Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.展开更多
Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based mat...Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based materials have shown good prospects as anodes for potassium-ion batteries.However,the volume expansion and structural collapse caused by periodic K+insertion/extraction have severely restricted further development and application of potassium-ion batteries.A hollow biomass carbon ball(NOP-PB)ternarily doped with N,O,and P was synthesized and used as the negative electrode of a potassium-ion battery.X-ray photoelectron spectroscopy,Fourier‐transform infrared spectroscopy,and transmission electron microscopy confirmed that the hollow biomass carbon spheres were successfully doped with N,O,and P.Further analysis proved that N,O,and P ternary doping expands the interlayer distance of the graphite surface and introduces more defect sites.DFT calculations simultaneously proved that the K adsorption energy of the doped structure is greatly improved.The solid hollow hierarchical porous structure buffers the volume expansion of the potassium insertion process,maintains the original structure after a long cycle and promotes the transfer of potassium ions and electrons.Therefore,the NOP‐PB negative electrode shows extremely enhanced electrochemical performance,including high specific capacity,excellent long‐term stability,and good rate stability.展开更多
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintai...Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure.展开更多
A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a...A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a thickness of20nm.The galvanostatic charge-discharge test of the CoAl-LDH/CSs composite shows a great specific capacitance of1198F/g at1A/g(based on the mass of the CoAl-LDH/CSs composite)in6mol/L KOH solution,and the composite displays an impressive specificcapacitance of920F/g even at a high current density of10A/g.Moreover,the composite remains a specific capacitance of928F/gafter1000cycles at2A/g,and the specific capacitance retention is84%,indicating that the composite has high specific capacitance,excellent rate capability and good cycling stability in comparison to pristine CoAl-LDH.展开更多
Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare n...Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare nitrogen-doped hierarchically porous carbon spheres was developed via co-pyrolyzation of poly(vinylidene chloride) and melamine in alginate gel beads. In this approach, melamine not only serves as the nitrogen precursor, but also acts as a template for the macropores structures. The nitrogen contents in the hierarchically porous carbon spheres reach a high level, ranging from 11.8 wt% to 14.7 wt%, as the melamine amount increases. Owing to the enriched nitrogen functionalities and the special hierarchical porous structure, the carbon spheres exhibit an outstanding CO_2 capture performance, with the dynamic capacity of as much as about 7 wt% and a separation factor about 49 at 25 °C in a gas mixture of CO_2/N_2(0.5:99.5, v/v).展开更多
In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: firs...In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.展开更多
Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri- ous impacts on the human living environment and health. The traditional oil-water s...Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri- ous impacts on the human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25-200 μm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12-15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents.展开更多
The electrochemical performance of hard carbon in sodium storage is still limited by its poor cycling stability and rate capability because of the sluggish kinetics process.In this study,we use a simple and effective ...The electrochemical performance of hard carbon in sodium storage is still limited by its poor cycling stability and rate capability because of the sluggish kinetics process.In this study,we use a simple and effective method to accelerate the kinetics process by engineering the structure of the electrode to promote its surface and near-surface reactions.This goal is realized by the use of slightly aggregated ultra-small carbon spheres.The large specific surface area formed by the small spheres can provide abundant active sites for electrochemical reactions.The abundant mesopores and macropores derived from the secondary particle piled structure of the carbon spheres could facilitate the transport of electrolytes,shorten the diffusion distance of Na^(+)and accommodate the volume expansion during cycling.Benefiting from these unique structure features,PG700-3(carbon spheres with the diameters of 40-60 nm carbonized at 700℃)exhibits high performance for sodium storage.A high reversible capacity of 163 mAh g^(-1) could be delivered at a current density of 1.0 A g^(-1) after 100 cycles.Interestingly,at a current density of 10.0 A g^(-1),the specific capacity of PG700-3 gradually increases to 140 mAh g^(-1) after 10000 cycles,corresponding to a capacity retention of 112%.Given the enhanced kinetics of SIBs reactions,PG700-3 exhibits an excellent rate capability,i.e.,230 and 138 mAh g^(-1) at 0.1 and 5.0 A g^(-1),respectively.This study provides a facile method to attain high performance anode materials for SIBs.The design strategy and improvement mechanism could be extended to other materials for high rate applications.展开更多
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ...The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.展开更多
Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micr...Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.展开更多
A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolys...A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolysis reaction process at 700-1000℃.The structures of CSs are characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The effect of preparation conditions on the morphology and its electrochemical properties of CSs acting as the anode material for lithium-ion battery(LIBs) are investigated.The XPS measurement results show that the CSs mainly contain C,N,O,and S elements.With the increase of pyrolysis temperature,the particle size of CSs decreases but the graphitization degree of CSs increases.As the anode material for LIBs,CSs show excellent electrochemical performance with a maximum reversible capacity of 365 mAh/g and an initial coulombic efficiency of 73.8% at a low current density of 50 mA/g.The CSs exhibit excellent cycling stability in a current range of 50 mA/g to 2 A/g,and still can maintain a stable reversible capacity of 347 mAh/g when the current is cycled back to 50mA/g.This is mainly ascribed to the existence of suitable heteroatom content and unique spherical structure of CSs.The heteroatom-doped CSs can provide a new choice for the preparation of high efficiency anode materials for LIBs.展开更多
Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ pres...Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ presents excellent electrocatalytic performance for hydrogen evolution reaction(HER). The overpotential at a current density of 10 m A cmis 108 and 163 mV in 0.5 M HSOand 1 M KOH, respectively, and maintains its electrocatalytic durability for at least 10 h. This work supplies a new field to challenge the construction of electrocatalysts for HER through using cost-effective carbon supported transition metal phosphides.展开更多
Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the doub...Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.展开更多
Suzuki-Miyaura(S-M)is regarded the most powerful way for synthesis biaryls,triaryls,or incorporating of substituted aryl moieties in organic preparation by the cross-coupling of aryl boronic acid with aryl halides usi...Suzuki-Miyaura(S-M)is regarded the most powerful way for synthesis biaryls,triaryls,or incorporating of substituted aryl moieties in organic preparation by the cross-coupling of aryl boronic acid with aryl halides using the Pd catalyst.This work reports the combining of the hydrothermal and microwaveassisted protocol to convert the glucose to magnetic carbon spheres(Fe_(3)O_(4)-CSPs)decorated with Pd nanoparticles(NPs)as the catalyst for Suzuki-Miyaura cross-coupling reactions.The physicochemical properties in the produced composite were examined using FESEM,HRTEM,nitrogen isotherms,Raman spectroscopy,FTIR,XPS,and XRD.The as-fabricated composite Pd/Fe_(3)O_(4)-CSPs is mostly spherical with a core–shell structure and possesses a great surface area of 253.2 m^(2).g^(-1).Its catalytic performance demonstrates that the composite has excellent stability and high tolerance Suzuki-Miyaura crosscoupling reactions in 30 min at 80℃.Both activated and deactivated aryl halides provided excellent yield.The as-fabricated catalyst was recycled for up to four catalytic cycles without a substantial decline in performance.Moreover,this research offers a facile roadmap for synthesizing Pd/Fe_(3)O_(4)-CSPs composites and promoting the practical implementation of Pd/Fe_(3)O_(4)-CSPs catalysts for organic transformation processes.展开更多
Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres befor...Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres before and after high temperature treatment(HTT) were characterized by X-ray diffractometry(XRD) ,scanning electronic microscopy(SEM) ,energy diffraction spectroscopy(EDS) ,and transmission electron microscopy(TEM) .The formation mechanism of carbon spheres was discussed.The results indicate that the carbon spheres convert to hollow polyhedron through HTT.Carbon spheres are composed of entangled and curve graphitic layers with short range order similar to cotton structure,and carbon polyhedron with dimension of 50-250 nm and shell thickness of 15-30 nm.The change of solid spheres to hollow polyhedron with branches gives a new evidence for formation mechanism of hollow carbon spheres.展开更多
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica...In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22279047)the Instrumental Analysis Center of Jiangsu University of Science and Technology。
文摘Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.
文摘Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.
文摘Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.
基金The authors are grateful of the financial support by the National Natural Science Foundation of China(51902083 and 21606068)the Foundation Strengthening Program(2019-JCJQ-142-00)the Higher Education Science and Technology Research Project of Hebei Province(ZD2019087).
文摘Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
基金We gratefully acknowledge support from the National Natural Science Foundation of China(Grant Nos.21905220,51772240,21503158,51425301,U1601214,21703184)the China Postdoctoral Science Foundation(2020M673408)+5 种基金the Key Research and Development Plan of Shaanxi Province,China(Grant No.2018ZDXM-GY-135)the Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J003)the“1000‐Plan program”of Shaanxi Province,the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY506)the Scientific Research Funds of Huaqiao University(17BS405)the State Key Laboratory for Mechanical Behavior of Materials(20192101)the Natural Science Foundation Committee of Jiangsu Province(BK20201190).
文摘Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.
基金The authors are grateful for support from the National Natural Science Foundation of China(No.21671160).
文摘Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based materials have shown good prospects as anodes for potassium-ion batteries.However,the volume expansion and structural collapse caused by periodic K+insertion/extraction have severely restricted further development and application of potassium-ion batteries.A hollow biomass carbon ball(NOP-PB)ternarily doped with N,O,and P was synthesized and used as the negative electrode of a potassium-ion battery.X-ray photoelectron spectroscopy,Fourier‐transform infrared spectroscopy,and transmission electron microscopy confirmed that the hollow biomass carbon spheres were successfully doped with N,O,and P.Further analysis proved that N,O,and P ternary doping expands the interlayer distance of the graphite surface and introduces more defect sites.DFT calculations simultaneously proved that the K adsorption energy of the doped structure is greatly improved.The solid hollow hierarchical porous structure buffers the volume expansion of the potassium insertion process,maintains the original structure after a long cycle and promotes the transfer of potassium ions and electrons.Therefore,the NOP‐PB negative electrode shows extremely enhanced electrochemical performance,including high specific capacity,excellent long‐term stability,and good rate stability.
基金the financial supports by the Natural Science Foundation of China (NSFC21576158, 21476132, 21576159 and 21403130)Shandong Provincial Natural Science Foundation, China (No. 2015 ZRB01765)
文摘Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure.
基金Project(21471162) supported by the National Natural Science Foundation of ChinaProject(2015H6016) supported by the Science and Technology Project of Fujian Province,China
文摘A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a thickness of20nm.The galvanostatic charge-discharge test of the CoAl-LDH/CSs composite shows a great specific capacitance of1198F/g at1A/g(based on the mass of the CoAl-LDH/CSs composite)in6mol/L KOH solution,and the composite displays an impressive specificcapacitance of920F/g even at a high current density of10A/g.Moreover,the composite remains a specific capacitance of928F/gafter1000cycles at2A/g,and the specific capacitance retention is84%,indicating that the composite has high specific capacitance,excellent rate capability and good cycling stability in comparison to pristine CoAl-LDH.
基金supported by the National Key R&D Program of China (2016YFB0600902)the Dalian National Laboratory for Clean Energy (DNL180401)the National Natural Science Foundation of China (21925803)。
文摘Synthesis of spherical carbon beads with effective CO_2 capture capability is highly desirable for large scale application of CO2 sorption, but remains challenging. Herein, a facile and efficient strategy to prepare nitrogen-doped hierarchically porous carbon spheres was developed via co-pyrolyzation of poly(vinylidene chloride) and melamine in alginate gel beads. In this approach, melamine not only serves as the nitrogen precursor, but also acts as a template for the macropores structures. The nitrogen contents in the hierarchically porous carbon spheres reach a high level, ranging from 11.8 wt% to 14.7 wt%, as the melamine amount increases. Owing to the enriched nitrogen functionalities and the special hierarchical porous structure, the carbon spheres exhibit an outstanding CO_2 capture performance, with the dynamic capacity of as much as about 7 wt% and a separation factor about 49 at 25 °C in a gas mixture of CO_2/N_2(0.5:99.5, v/v).
基金supported by NSFC (No. 20873014 and 21073026)the Program for New Century Excellent Talents in University of China (NCET-09-0254)
文摘In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.
基金the National Nat-ural Science Foundation of China(Nos.51872210 and 51672194)the Program for Innovative Teams of Outstand-ing Young and Middle-aged Researchers in the Higher Edu-cation Institutions of Hubei Province,China(No.T201602)the Key Program of Natural Science Foundation of Hubei Province,China(No.2017CFA004).
文摘Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused seri- ous impacts on the human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25-200 μm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12-15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents.
基金the support from the National Key Research and Development Program(No.2018YFB1107500)Liao Ning Revitalization Talents Program(XLYC1907144)+1 种基金the National Natural Science Foundation of China(No.51503024)Dalian Youth Science and Technology Star Project Support Program(No.2017RQ104)。
文摘The electrochemical performance of hard carbon in sodium storage is still limited by its poor cycling stability and rate capability because of the sluggish kinetics process.In this study,we use a simple and effective method to accelerate the kinetics process by engineering the structure of the electrode to promote its surface and near-surface reactions.This goal is realized by the use of slightly aggregated ultra-small carbon spheres.The large specific surface area formed by the small spheres can provide abundant active sites for electrochemical reactions.The abundant mesopores and macropores derived from the secondary particle piled structure of the carbon spheres could facilitate the transport of electrolytes,shorten the diffusion distance of Na^(+)and accommodate the volume expansion during cycling.Benefiting from these unique structure features,PG700-3(carbon spheres with the diameters of 40-60 nm carbonized at 700℃)exhibits high performance for sodium storage.A high reversible capacity of 163 mAh g^(-1) could be delivered at a current density of 1.0 A g^(-1) after 100 cycles.Interestingly,at a current density of 10.0 A g^(-1),the specific capacity of PG700-3 gradually increases to 140 mAh g^(-1) after 10000 cycles,corresponding to a capacity retention of 112%.Given the enhanced kinetics of SIBs reactions,PG700-3 exhibits an excellent rate capability,i.e.,230 and 138 mAh g^(-1) at 0.1 and 5.0 A g^(-1),respectively.This study provides a facile method to attain high performance anode materials for SIBs.The design strategy and improvement mechanism could be extended to other materials for high rate applications.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.
基金financially supported by the National Key R&D Program of China (No. 2018YFB0104000 and No. 2019YFA0210300)National Nature Science Foundation of China (No.21571189 and No.21671200)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Hunan Provincial Science and Technology Plan Project of China (No. 2019GK2033, No. 2017TP1001, CPS2019K06 and No. 2018RS3009)Postdoctoral International Exchange Program Funding of China (No. [2018]115)China Postdoctoral Science Foundation (2019M652802)
文摘Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.
基金supported by the Foundation of Heilongjiang Academy of Sciences (KYJJ2019HY01)the Foundation of Heilongjiang Provincial Institute of Basic Applied Technology Research Project (ZNJZ2018NY01)
文摘A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolysis reaction process at 700-1000℃.The structures of CSs are characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The effect of preparation conditions on the morphology and its electrochemical properties of CSs acting as the anode material for lithium-ion battery(LIBs) are investigated.The XPS measurement results show that the CSs mainly contain C,N,O,and S elements.With the increase of pyrolysis temperature,the particle size of CSs decreases but the graphitization degree of CSs increases.As the anode material for LIBs,CSs show excellent electrochemical performance with a maximum reversible capacity of 365 mAh/g and an initial coulombic efficiency of 73.8% at a low current density of 50 mA/g.The CSs exhibit excellent cycling stability in a current range of 50 mA/g to 2 A/g,and still can maintain a stable reversible capacity of 347 mAh/g when the current is cycled back to 50mA/g.This is mainly ascribed to the existence of suitable heteroatom content and unique spherical structure of CSs.The heteroatom-doped CSs can provide a new choice for the preparation of high efficiency anode materials for LIBs.
基金supported by the National Natural Science Foundation (21573083)1000 Young Talent (to Deli Wang)
文摘Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ presents excellent electrocatalytic performance for hydrogen evolution reaction(HER). The overpotential at a current density of 10 m A cmis 108 and 163 mV in 0.5 M HSOand 1 M KOH, respectively, and maintains its electrocatalytic durability for at least 10 h. This work supplies a new field to challenge the construction of electrocatalysts for HER through using cost-effective carbon supported transition metal phosphides.
基金The funding support from the Natural Science Research Project of Jiangsu Higher Education Institutions(Grant No.21KJA530004)the 2021 Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.
文摘Suzuki-Miyaura(S-M)is regarded the most powerful way for synthesis biaryls,triaryls,or incorporating of substituted aryl moieties in organic preparation by the cross-coupling of aryl boronic acid with aryl halides using the Pd catalyst.This work reports the combining of the hydrothermal and microwaveassisted protocol to convert the glucose to magnetic carbon spheres(Fe_(3)O_(4)-CSPs)decorated with Pd nanoparticles(NPs)as the catalyst for Suzuki-Miyaura cross-coupling reactions.The physicochemical properties in the produced composite were examined using FESEM,HRTEM,nitrogen isotherms,Raman spectroscopy,FTIR,XPS,and XRD.The as-fabricated composite Pd/Fe_(3)O_(4)-CSPs is mostly spherical with a core–shell structure and possesses a great surface area of 253.2 m^(2).g^(-1).Its catalytic performance demonstrates that the composite has excellent stability and high tolerance Suzuki-Miyaura crosscoupling reactions in 30 min at 80℃.Both activated and deactivated aryl halides provided excellent yield.The as-fabricated catalyst was recycled for up to four catalytic cycles without a substantial decline in performance.Moreover,this research offers a facile roadmap for synthesizing Pd/Fe_(3)O_(4)-CSPs composites and promoting the practical implementation of Pd/Fe_(3)O_(4)-CSPs catalysts for organic transformation processes.
基金Project(2006CB600901) supported by the National Basic Research Program of ChinaProject(0991015) supported by Guangxi Natural Science Foundation,ChinaProject(200808MS083) supported by Guangxi Education Department Foundation,China
文摘Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres before and after high temperature treatment(HTT) were characterized by X-ray diffractometry(XRD) ,scanning electronic microscopy(SEM) ,energy diffraction spectroscopy(EDS) ,and transmission electron microscopy(TEM) .The formation mechanism of carbon spheres was discussed.The results indicate that the carbon spheres convert to hollow polyhedron through HTT.Carbon spheres are composed of entangled and curve graphitic layers with short range order similar to cotton structure,and carbon polyhedron with dimension of 50-250 nm and shell thickness of 15-30 nm.The change of solid spheres to hollow polyhedron with branches gives a new evidence for formation mechanism of hollow carbon spheres.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject supported by the Recruitment Program of Global Youth Experts,ChinaProject(20130162120031)supported by Research Fund for the Doctoral Program of Higher Education of China
文摘In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.