X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld...X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.展开更多
The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. ...The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. The Charpy tests were completed at --20 ℃ for evaluating the toughness of coarse grain heat affected zone (CGHAZ). The microstructure was examined by optical microscope (OM) and transmission electron microscopy (TEM), and the austenite constituent was quantified by X-ray diffraction. The results showed that the ultra-low carbon can improve the toughness of CGHAZ by suppressing the formation of carbide, decreasing the martensite austenite (M-A) constituent and increasing the residual austenite in the M A.展开更多
The relationship between microstructures and mechanical properties of a medium carbon V-N microalloyed steel used for N80 seamless oil-well tubes of hot rolling non-quenched/tempered (non-Q and T) was investigated.The...The relationship between microstructures and mechanical properties of a medium carbon V-N microalloyed steel used for N80 seamless oil-well tubes of hot rolling non-quenched/tempered (non-Q and T) was investigated.The results have shown that volume percentages of upper bainite,modified bainite and ferrite have a decisive influence on impact energies of steel tubes.When the total volume percentage of bainite is larger than 5%,the impact energy of tubes can not satisfy with the industrial criteria.Moreover,if the total volume percentage of bainite is smaller than 5%,then the impact energy of steel tubes enhances with volume percentage of ferrite increasing.The final microstructures have closely relation with tube billet quality,controlled cooling temperature after tube rolling and cooling method after stretch-reduction-diameter.High quality of medium carbon V-N microalloyed steel for non-Q and T oil-well tubes can be produced through comprehensive control of microstructures and mechanical properties in sub-procedures,especially for tube billet quality and controlled cooling parameters.展开更多
基金The present work was financially supported by a China National“973”Grant under Contract No.G1998061511.
文摘X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The mi-crostructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.
文摘The coarse grain HAZ microstructure and property of X80 pipeline steel with different carbon content was investigated. The weld thermal simulation test was carried out on Gleeble 1500 thermal mechanical test machine. The Charpy tests were completed at --20 ℃ for evaluating the toughness of coarse grain heat affected zone (CGHAZ). The microstructure was examined by optical microscope (OM) and transmission electron microscopy (TEM), and the austenite constituent was quantified by X-ray diffraction. The results showed that the ultra-low carbon can improve the toughness of CGHAZ by suppressing the formation of carbide, decreasing the martensite austenite (M-A) constituent and increasing the residual austenite in the M A.
基金financial support from Chinese National Nature Science Fund(Project No.50271009and No.51071019)Wuxi Seamless Steel Tube Company,Ltdthe Vanadium International Technical Committee via the CSM
文摘The relationship between microstructures and mechanical properties of a medium carbon V-N microalloyed steel used for N80 seamless oil-well tubes of hot rolling non-quenched/tempered (non-Q and T) was investigated.The results have shown that volume percentages of upper bainite,modified bainite and ferrite have a decisive influence on impact energies of steel tubes.When the total volume percentage of bainite is larger than 5%,the impact energy of tubes can not satisfy with the industrial criteria.Moreover,if the total volume percentage of bainite is smaller than 5%,then the impact energy of steel tubes enhances with volume percentage of ferrite increasing.The final microstructures have closely relation with tube billet quality,controlled cooling temperature after tube rolling and cooling method after stretch-reduction-diameter.High quality of medium carbon V-N microalloyed steel for non-Q and T oil-well tubes can be produced through comprehensive control of microstructures and mechanical properties in sub-procedures,especially for tube billet quality and controlled cooling parameters.