期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chemical characteristics and source apportionment of PM_(2.5) between heavily polluted days and other days in Zhengzhou, China 被引量:24
1
作者 Nan Jiang Qiang Li +5 位作者 Fangcheng Su Qun Wang Xue Yu Panru Kang Ruiqin Zhang Xiaoyan Tang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期188-198,共11页
PM(2.5) samples were collected in Zhengzhou during 3 years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM(2.5) concentrations and annual avera... PM(2.5) samples were collected in Zhengzhou during 3 years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM(2.5) concentrations and annual average values exceeded the Chinese National Ambient Air Quality Daily and Annual Standards, indicating serious PM(2.5) pollution. The average concentration of water-soluble inorganic ions was 2.4 times higher in heavily polluted days(daily PM32.5 concentrations &gt; 250 μg/mand visibility &lt; 3 km) than that in other days, with sulfate, nitrate, and ammonium as major ions. According to the ratio of NO-3/SO2-4,stationary sources are still the dominant source of PM(2.5) and vehicle emission could not be ignored. The ratio of secondary organic carbon to organic carbon indicated that photochemical reactivity in heavily polluted days was more intense than in other days.Crustal elements were the most abundant elements, accounting for more than 60% of 23 elements. Chemical Mass Balance results indicated that the contributions of major sources(i.e., nitrate, sulfate, biomass, carbon and refractory material, coal combustion, soil dust,vehicle, and industry) of PM(2.5) were 13%, 16%, 12%, 2%, 14%, 8%, 7%, and 8% in heavily polluted days and 20%, 18%, 9%, 2%, 27%, 14%, 15%, and 9% in other days, respectively.Extensive combustion activities were the main sources of polycyclic aromatic hydrocarbons during the episode(Jan 1-9, 2015) and the total benzo[a]pyrene equivalency concentrations in heavily polluted days present significant health threat. Because of the effect of regional transport, the pollution level of PM(2.5) in the study area was aggravated. 展开更多
关键词 PM2.5 Water soluble inorganic ions Secondary organic carbon CMB Back trajectory analysis
原文传递
Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport 被引量:20
2
作者 FANG ShuangXi Pieter P.TANS +3 位作者 YAO Bo LUAN Tian WU YanLing YU DaJiang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1886-1895,共10页
Atmospheric CO_2 and CH_4 have been continuously measured since 2009 at Longfengshan WMO/GAW station(LFS) in China. Variations of the mole fractions, influence of long-distance transport, effects of local sources/sink... Atmospheric CO_2 and CH_4 have been continuously measured since 2009 at Longfengshan WMO/GAW station(LFS) in China. Variations of the mole fractions, influence of long-distance transport, effects of local sources/sinks and the characteristics of synoptic scale variations have been studied based on the records from 2009 to 2013. Both the CO_2 and CH_4 mole fractions display increasing trends in the last five years, with growth rates of 3.1±0.02 ppm yr.1 for CO_2 and 8±0.04 ppb yr.1(standard error, 1-σ)for CH_4. In summer, the regional CO_2 mole fractions are apparently lower than the Marine Boundary Layer reference, with the lowest value of.13.6±0.7 ppm in July, while the CH_4 values are higher than the MBL reference, with the maximum of 139±6 ppb.From 9 to 17(Local time, LT) in summer, the atmospheric CO_2 mole fractions at 10 m a.g.l. are always lower than at 80 m, with a mean difference of.1.1±0.2 ppm, indicating that the flask sampling approach deployed may underestimate the background mole fractions in summer. In winter, anthropogenic emissions dominate the regional CO_2 and CH_4 mole fractions. Cluster analysis of backward trajectories shows that atmospheric CO_2 and CH_4 at LFS are influenced by anthropogenic emissions from the southwest(Changchun and Jilin city) all year. The synoptic scale variations indicate that the northeastern China plain acts as an important source of atmospheric CO_2 and CH_4 in winter. 展开更多
关键词 carbon dioxide Methane Observation Backward trajectory Atmospheric transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部