期刊文献+
共找到1,866篇文章
< 1 2 94 >
每页显示 20 50 100
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
1
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)c nanoreactor carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
2
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(c) Nitrogen(N) Phosphorus(P) Pinus koraiensis
下载PDF
Carbon allocation in Picea jezoensis:Adaptation strategies of a non-treeline species at its upper elevation limit
3
作者 Renkai Dong Na Li +4 位作者 Mai-He Li Yu Cong Haibo Du Decai Gao Hong S.He 《Forest Ecosystems》 SCIE CSCD 2024年第3期347-357,共11页
Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the pre... Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change. 展开更多
关键词 ^(13)c pulse labeling carbon distribution Non-structural carbohydrates(NSc) Non-treeline species Sink activity Stressful environments Upper elevation limit
下载PDF
C23 ameliorates carbon tetrachloride-induced liver fibrosis in mice
4
作者 Rong-Xing Tang Xiao-Jun Xie +3 位作者 Yong Xiong Su Li Chen Luo Yi-Gang Wang 《World Journal of Hepatology》 2024年第9期1278-1288,共11页
BACKGROUND C23,an oligo-peptide derived from cold-inducible RNA-binding protein(CIRP),has been reported to inhibit tissue inflammation,apoptosis and fibrosis by binding to the CIRP receptor;however,there are few repor... BACKGROUND C23,an oligo-peptide derived from cold-inducible RNA-binding protein(CIRP),has been reported to inhibit tissue inflammation,apoptosis and fibrosis by binding to the CIRP receptor;however,there are few reports on its role in liver fibrosis and the underlying mechanism is unknown.AIM To explore whether C23 plays a significant role in carbon tetrachloride(CCl4)-induced liver fibrosis.METHODS CCl4 was injected for 6 weeks to induce liver fibrosis and C23 was used beginning in the second week.Masson and Sirius red staining were used to examine changes in fiber levels.Inflammatory factors in the liver were detected and changes inα-smooth muscle actin(α-SMA)and collagen I expression were detected via immu-nohistochemical staining to evaluate the activation of hematopoietic stellate cells(HSCs).Western blotting was used to detect the activation status of the trans-forming growth factor-beta(TGF-β)/Smad3 axis after C23 treatment.RESULTS CCl4 successfully induced liver fibrosis in mice,while tumor necrosis factor-alpha(TNF-α),IL(interleukin)-1β,and IL-6 levels increased significantly and the IL-10 level decreased significantly.Interestingly,C23 inhibited this process.On the other hand,C23 significantly inhibited the activation of HSCs induced by CCl4,which inhibited the expression ofα-SMA and the synthesis of collagen I.In terms of mechanism,C23 can block Smad3 phosphorylation significantly and inhibits INTRODUCTION At present there is no specific and effective drug for treating liver fibrosis caused by acute or chronic injury.Although preclinical research has made breakthroughs,their suitability as clinical treatments is still unknown.The activation of hepatic stellate cells(HSCs)caused by chronic inflammation is a key process in the development of liver fibrosis and activated HSCs expressα-smooth muscle actin(α-SMA)and transdifferentiate into myofibroblasts with proliferation,migration and secretion abilities,synthesizing the extracellular matrix to deposit in the hepatocyte space and subse-quently forming liver fibrosis[1].Although therapeutic strategies have improved due to past few efforts there is no ideal treatment for hepatic fibrosis[2].Extracellular cold inducible RNA binding protein(CIRP)has been shown to play a role in various acute and chronic inflammatory diseases by promoting tissue inflammation and apoptosis and inducing fibrosis through its receptor Toll-like receptor 4(TLR4)[3].C23 is a recognized competitive inhibitor of CIRP that can competitively bind to CIRP receptors and reduce tissue damage in inflammatory diseases[4].C23 has been shown to significantly reduce serum tumor necrosis factor-alpha(TNF-α),IL(interleukin)-6 and IL-1βlevels.In addition,it can reduce tissue TLR4,TNF-α,IL-6 and IL-1βlevels and inhibit the colocalization of CIRP and TLR4,which plays a significant role in systemic inflammation[5].Re-search has shown that CIRP induces the inflammatory phenotype of lung fibroblasts in a TLR4-dependent manner[6].On the other hand,CIRP is associated with markers of fibrosis andα-SMA is significantly positively correlated with CIRP.Cirp-/-mice exhibit attenuated expression ofα-SMA and collagen(COL1A1 and COL3A1),decreased hydroxyproline content,decreased histological fibrosis scores,and improved pulmonary hypertension[7].C23 inhibited the release of TNF-α,the degradation of IκB and the nuclear translocation of NF-κB in CIRP-stimulated macrophages in a dose-dependent manner and C23 treatment significantly increased the serum levels of lactic dehydrogenase,alanine ami-notransferase,IL-6,TNF-αand IL-1βin septic CLP mice[8].Based on previous research we hypothesized that C23 might alleviate liver fibrosis by inhibiting acute and chronic inflammation.As a selective hepatotoxic chemical carbon tetrachloride(CCl4).can induce inflammation and activate HSCs,promoting liver fibrosis.This study reveals the role and mechanism of C23 in CCl4-induced liver fibrosis in mice.at room temperature for 30 minutes.The gray value of each group was calculated after chemiluminescence. 展开更多
关键词 c23 oligo-peptide carbon tetrachloride Liver fibrosis Transforming growth factor-beta/Smad3 axis
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
5
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber c/c composites flexural destruction crack propagation
下载PDF
Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes 被引量:11
6
作者 Le Hu Bin Luo +3 位作者 Chenghao Wu Pengfei Hu Lianzhou Wang Haijiao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期124-130,共7页
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structure... The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields. 展开更多
关键词 Si/c composites Yolk-shell Multiple SI nanoparticles Double carbon SHELLS Energy storage
下载PDF
Effects of Preform and Pyrolytic Carbon Structure on Thermophysical Properties of 2D Carbon/Carbon Composites 被引量:8
7
作者 罗瑞盈 程永宏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期112-118,共7页
Four kinds of carbon/carbon (C/C) composites, including the needled carbon fiber felt/the pyrolytic carbon (two different pyrolytic carbon microstructures), the chopped carbon fiber/the resin + pyrolytic carbon (PyrC)... Four kinds of carbon/carbon (C/C) composites, including the needled carbon fiber felt/the pyrolytic carbon (two different pyrolytic carbon microstructures), the chopped carbon fiber/the resin + pyrolytic carbon (PyrC), and the carbon cloth/PyrC, named as the composites 1#, 4#, 2#, and 3#, are prepared respectively. Effects of the preform and pyrolytic carbon structure on the thermophysical properties of 2D C/C composites are studied. The C/C composites possess low coefficient of thermal expansion (CTE). In a range of some temperatures, the negative expansion emerges in x-y direction for four C/C composites. From 0 to 900℃, the CTE is small and almost linear with the temperatures. The C/C composites have high thermal conductivities (TCs). As a function of temperature, TCs of the C/C composites are varied with the structures of preform and pyrc as well as the direction of heat transfer. In x-y and z direction, TCs differ greatly and that in x-y direction (25.6-174 W/m·K) is several times larger than that in z direction(3.5-50 W/m·K). 展开更多
关键词 carbon/carbon(c/c)composite pyrolytic carbon thermal expansion thermal conductivity
下载PDF
The effect of modification of matrix on densification efficiency of pitch based carbon composites 被引量:3
8
作者 MOHAMMAD Mahdi Sotoudehnia ALI Khalife Soltani +1 位作者 AMIR Maghsouipour FATOLLAH Moztarzadeh 《Journal of Coal Science & Engineering(China)》 2010年第4期408-414,共7页
Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in... Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in terms of carbon yield, density, viscosity,and fractionation with solvents, as well as by thermal analysis methods.The suitability ofthese commercially available matrices for densification of 3 dimensional carbon-carboncomposites was examined.The theoretical results compared with experimental results.The highest density after impregnation was obtained using one of the coal tar pitches.Thepredicted results are in reasonable agreement with experiment data.The significance ofthis research is that a special heat treatment regime was conducted.The effects of modificationtemperature on the densification efficiency of composites were investigated andthen structure and characteristics of the composites were determined by scanning electronmicroscopy (SEM), Transmission electron microscopy (TEM) and X-Ray Diffraction (XRD). 展开更多
关键词 PITcH carbonIZATION IMPREGNATION c/c composites
下载PDF
EXPERIMENTAL STUDY ON PEK -C MODIFIED EPOXIES AND THE CARBON FIBER COMPOSITES FOR AEROSPACE APPLICATION 被引量:7
9
作者 李暘暘 益小苏 唐邦明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期242-249,共8页
The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took pl... The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested. 展开更多
关键词 PEK-c thermoset/thermoplastic binary system phase behavior interface TOUGHNESS carbon fiber composites
下载PDF
Effect of Mg/Al Ratios on Hydration Mechanism of Tabular Alumina Carbon Composites Reinforced by Al4C3 in situ Reaction 被引量:2
10
作者 杨依帆 JIANG Mingxue +4 位作者 YANG Ding'ao YUAN Shouqian ZHAO Jizeng ZHAO Wei YANG Mengyao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期800-805,共6页
Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown... Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 ℃-84 ℃ in H2O(g). The hydration was controlled by diffusion from 24.7 ℃ to 33 ℃. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 ℃ in a dry place or storing them with paraffin-coating. 展开更多
关键词 hydration mechanism tabular alumina carbon Al4c3 Mg/Al ratios
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:1
11
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen c:N ratio saline soil
下载PDF
Kinetics and Mechanism of Oxidation Induced Contraction of MgAl2O4 Spinel Carbon Composites Reinforced by Al4C3 in situ Reaction
12
作者 YANG Mengyao XIAO Guoqing +4 位作者 YANG Ding'ao YUAN Shouqian ZAO Jizeng ZHAO Wei GAO Song 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期778-785,共8页
Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1... Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick. 展开更多
关键词 KINETIcS mechanism OXIDATION cONTRAcTION MgAl2O4 spinel carbon Al4c3 in situ reaction
下载PDF
Effects of Carbon Nanotubes by Electrophoretic Deposition on Interlaminar Properties of Two Dimensional Carbon/carbon Composites
13
作者 黎云玉 GUO Lingjun +2 位作者 LI Hejun MA Haili 宋强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期994-1000,共7页
Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabrica... Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabricate two-dimensional(2 D) carbon/carbon(C/C) composites. Effects of EPD CNTs on interlaminar shear performance and mode Ⅱ interlaminar fracture toughness(GⅡc) of 2 D C/C composites were investigated. Results showed that EPD CNTs were uniformly covered on carbon fibers, acting as a porous coating. Such a CNT coating can obviously enhance the interlaminar shear strength and GⅡc of 2 D C/C composites. With increaing EPD CNTs, the interlaminar shear strength and GⅡc of 2 D C/C composites increase greatly and then decrease, both of which run up to their maximum values, i e, 13.6 MPa and 436.0 J·m-2, when the content of EPD CNTs is 0.54 wt%, 2.27 and 1.45 times of the baseline. Such improvements in interlaminar performance of 2 D C/C composites are mainly beneficial from their increased cohesion of interlaminar matrix, which is caused not only by the direct reinforcing effect of EPD CNT network but also by the capacity of EPD CNTs to refine pyrocarbon matrix and induce multilayered microstructures that greatly increase the crack propagation resistance through "crack-blocking and-deflecting mechanisms". 展开更多
关键词 electrophoretic deposition carbon nanotube c/c composite interlaminar performance reinforcing mechanism
下载PDF
Reclamation during oasification is conducive to the accumulation of the soil organic carbon pool in arid land
14
作者 YANG Yuxin GONG Lu TANG Junhu 《Journal of Arid Land》 SCIE CSCD 2023年第3期344-358,共15页
Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stabi... Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stability mechanism under the action of the human-land relationship during the oasification of arid land,which is critical for understanding the carbon dynamics of terrestrial ecosystems in arid lands under global climate change.In this study,we investigated the Alar Reclamation Area on the northern edge of the Tarim Basin,Xinjiang Uygur Autonomous Region of China,in 2020.In original desert and oasis farmlands with different reclamation years,including 6,10,18,and 30 a,and different soil depths(0-20,20-40,40-60 cm),we analyzed the variations in SOC,very liable carbon(C_(VL)),liable carbon(C_(L)),less liable carbon(C_(LL)),and non-liable carbon(C_(NL))using the method of spatial series.The differences in the stable carbon isotope ratio(δ^(13)C)and beta(β)values reflecting the organic carbon decomposition rate were also determined during oasification.Through redundancy analysis,we derived and discussed the relationships among SOC,carbon fractions,δ^(13)C,and other soil physicochemical properties,such as the soil water content(SWC),bulk density(BD),pH,total salt(TS),total nitrogen(TN),available phosphorus(AP),and available potassium(AK).The results showed that there were significant differences in SOC and carbon fractions of oasis farmlands with different reclamation years,and the highest SOC was observed at the oasis farmland with 30-a reclamation year.C_(VL),C_(L),C_(LL),and C_(NL) showed significant changes among oasis farmlands with different reclamation years,and C_(VL) had the largest variation range(0.40-4.92 g/kg)and accounted for the largest proportion in the organic carbon pool.The proportion of C_(NL) in the organic carbon pool of the topsoil(0-20 cm)gradually increased.δ^(13)C varied from-25.61‰to-22.58‰,with the topsoil showing the most positive value at the oasis farmland with 10-a reclamation year;while theβvalue was the lowest at the oasis farmland with 6-a reclamation year and then increased significantly.Based on the redundancy analysis results,the soil physicochemical properties,such as TN,AP,AK,and pH,were significantly correlated with C_(L),and TN and AP were positively correlated with C_(VL).However,δ^(13)C was not significantly influenced by soil physicochemical properties.Our analysis advances the understanding of SOC dynamics during oasification,revealing the risk of soil carbon loss and its contribution to terrestrial carbon accumulation in arid lands,which could be useful for the sustainable development of regional carbon resources and ecological protection in arid ecosystem. 展开更多
关键词 OASIFIcATION soil organic carbon carbon fractions labile carbon δ^(13)c arid land
下载PDF
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons
15
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 Reactive ball milling co-Fe bimetallic catalyst carbon dioxide Value-added hydrocarbon cc coupling reaction
下载PDF
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
16
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2c hollow nanotubes N-doped carbon nanosheets sandwich structure
下载PDF
Ca_(2)Fe_(2)O_(5)催化剂对半焦基DC-SOFC性能的影响
17
作者 刘国阳 周安宁 +1 位作者 刘倩 王俊哲 《煤炭学报》 EI CAS CSCD 北大核心 2024年第3期1647-1656,共10页
半焦与CO_(2)的气化反应速率是影响半焦燃料基DC-SOFC电池性能的关键。为提高半焦的CO_(2)气化反应性,采用柠檬酸溶胶-凝胶法制备了具有钙钛矿结构的Ca_(2)Fe_(2)O_(5)催化剂,用SEM、XRD、XPS、低温氮气吸脱附等分析手段研究了Ca_(2)Fe_... 半焦与CO_(2)的气化反应速率是影响半焦燃料基DC-SOFC电池性能的关键。为提高半焦的CO_(2)气化反应性,采用柠檬酸溶胶-凝胶法制备了具有钙钛矿结构的Ca_(2)Fe_(2)O_(5)催化剂,用SEM、XRD、XPS、低温氮气吸脱附等分析手段研究了Ca_(2)Fe_(2)O_(5)催化剂的形貌和结构,采用热重分析实验研究Ca_(2)Fe_(2)O_(5)催化剂对半焦燃料的CO_(2)气化反应催化活性;在Ag-GDC|YSZ|GDC-Ag电解质支撑电池系统上,研究了添加Ca_(2)Fe_(2)O_(5)催化剂对半焦燃料基DC-SOFC输出性能的影响。结果表明,随着催化剂焙烧温度的提高,Ca_(2)Fe_(2)O_(5)催化剂晶粒尺寸逐渐增大、比表面积降低,750℃焙烧的催化剂具有良好的分散性、颗粒尺寸约为0.1μm,在半焦的CO_(2)气化反应中催化作用最好;相较于CaO和Fe2O3,Ca_(2)Fe_(2)O_(5)催化剂结构中吸附氧浓度更高,在半焦的CO_(2)气化反应中表现出更为优异的催化活性;Ca_(2)Fe_(2)O_(5)催化剂的循环稳定性取决于催化剂结构的热稳定性,其循环使用时活性降低主要归因于半焦燃料中无机灰分的包裹。催化剂对DC-SOFC输出性能影响表明,当半焦中添加10%的Ca_(2)Fe_(2)O_(5)催化剂时,电池的峰值功率密度从15.3 mW/cm^(2)增大到23.7 mW/cm^(2);EIS分析表明阳极传质阻力是影响DC-SOFC输出性能和燃料利用率的主要因素,降低灰分、催化剂累积带来的传质阻力可有效提高电池寿命和燃料利用率。 展开更多
关键词 直接碳固体氧化物燃料电池 钙钛矿 催化剂 c-cO_(2)气化反应
下载PDF
碳笼负载镍基磁性催化剂Ni@Cage-C的制备与性能研究
18
作者 廖立 宋谦 +2 位作者 龙沁 赖雪飞 邓怡 《化工设计通讯》 CAS 2024年第2期104-106,共3页
以自然结晶法制备的ZIF-67为前驱体,采用包裹-刻蚀-碳化策略,得到大小均匀的纳米碳笼(Cage-C),再于液相条件下以碳笼为载体负载上活性金属镍(Ni),成功制备了非贵金属磁性催化剂Ni@Cage-C,并应用于对硝基苯酚催化还原反应以考察其多相催... 以自然结晶法制备的ZIF-67为前驱体,采用包裹-刻蚀-碳化策略,得到大小均匀的纳米碳笼(Cage-C),再于液相条件下以碳笼为载体负载上活性金属镍(Ni),成功制备了非贵金属磁性催化剂Ni@Cage-C,并应用于对硝基苯酚催化还原反应以考察其多相催化性能。结果表明:优化条件下制备的Ni@Cage-C催化剂为碳笼包裹单质镍结构,其平均颗粒大小为550 nm;将Ni@Cage-C用于对硝基苯酚催化还原反应时,催化性能明显优于参照催化剂雷尼镍(Raney-Ni)。质量反应速率常数kM为6.11 mg^(-1)·min^(-1),催化效率达到98.87%,循环反应十圈后活性仍高于初始活性的85%。 展开更多
关键词 碳笼 磁性催化剂 Ni@cage-c 对硝基苯酚
下载PDF
Transformation of Carbon and Nitrogen by Earthworms in the Decomposition Processes of Broad-leaved Litters 被引量:14
19
作者 DONG Weihua YIN Xiuqin 《Chinese Geographical Science》 SCIE CSCD 2007年第2期166-172,共7页
Earthworms are the important constituents in the decayed food web and the main ecological conditioners in the process of decomposition and nutrient mineralization. The transformation of organic carbon (C) and total ni... Earthworms are the important constituents in the decayed food web and the main ecological conditioners in the process of decomposition and nutrient mineralization. The transformation of organic carbon (C) and total nitrogen (N) in the broad-leaved litters ingested by earthworms was researched by means of a laboratory experiment. Experimental samples were collected from broad-leaved Korea Pine mixed forest in Liangshui National Natural Reserve (47°10′50″N, 128°53′20″E) in the northeastern Xiao Hinggan Mountains of Northeast China. The contents of organic C and total N in earthworms, leaf litters and earthworm faeces were analyzed. Results show that the organic C content was in the fol- lowing order: leaf litters>faeces>earthworms, while total N content was contrary to that of the organic C. The organic C contents in the different leaf litters were in the following order: Tilia amurensis>Betula costata>Acer mono, whereas the total N contents in the different leaf litters were: Betula costata>Tilia amurensis>Acer mono. The contents of organic C and total N in the faeces from the different leaf litters were almost consistent with the contents of the leaf litters. After the leaf litters were ingested by earthworms, the organic C, which was transformed to increase earthworms' weights, ac- counted for 3.90%-13.31% of the total ingestion by earthworms, while that in the earthworm faeces accounted for 6.14%-13.70%. The transformed organic C through the other metabolism (e.g., respiration) of earthworms accounted for 75.04%-89.92%. The ingested organic C by earthworms was mostly used for metabolic activities. The N ingested by earthworms was less than organic C. It is estimated that 37.08% of total N was transformed to increase the earthworm's weight, 19.97% into earthworm faeces and 47.86% for the consumption of the earthworm's activities. The earthworms not only increased the content of organic C and total N in the soil, but also decreased the values of C/N in the soil and leaf litters. Earthworms play a major role in the leaf litters' decomposition and transformation. 展开更多
关键词 broad-leaved litters organic carbon total nitrogen EARTHWORM c transformation N transformation
下载PDF
Carbon and oxygen isotopic composition of carbonate cements of different phases in terrigenous siliciclastic reservoirs and significance for their origin:A case study from sandstones of the Triassic Yanchang Formation,southwestern Ordos Basin,China 被引量:11
20
作者 WANG Qi ZHUO Xizhun +1 位作者 CHEN Guojun LI Xiaoyan 《Chinese Journal Of Geochemistry》 EI CAS 2008年第3期249-256,共8页
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope(their δ18O values range from-0.3‰--0.1‰) and lighter oxygen isotope(their δ18O val... Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope(their δ18O values range from-0.3‰--0.1‰) and lighter oxygen isotope(their δ18O values range from-22.1‰--19.5‰).Generally,they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water.This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones,preserving intragranular volume and providing the mass basis for later disso-lution caused by acidic fluid flow to produce secondary porosity.Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from-8.02‰ to-3.23‰,and lighter oxygen isotope with δ18O values ranging from-22.9‰ to-19.7‰,which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis.As the mid-late diagenetic products,ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir.The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from-1.92‰ to-0.84‰,and shows a wide range of variations in oxygen isotopic composition,with δ18O values ranging from-20.5‰ to-12.6‰.They are believed to have nothing to do with decarboxylation,but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation,and the alkaline diagenetic environment at the mid-late stage would promote this process. 展开更多
关键词 碳氧同位素合成 碳酸盐水泥 碳源 可分解水池
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部