Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemic...Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.展开更多
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were...Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.展开更多
The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield str...The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE...Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.展开更多
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ...Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification.展开更多
Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of th...Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.展开更多
AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform inf...AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(...In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep.展开更多
An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a...An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.展开更多
Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two dif...Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two different media on dispersion of CNTs, and preparation of the nano-composite. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy and transmission electron microscopy. Also, the mechanical properties were measured by microhardness test. The mean crystallite size was in the range of 20-63 nm depending on milling medium and energy. CNTs dispersion is a function of milling energy. According to FESEM images and microhardness results, it can be concluded that wet milling is more applicable in dispersing CNTs homogeneously in comparison to dry milling. It was also found that wet milling at higher milling energies can be a beneficial method of producing the homogeneous hybrid nano-composite with the least damages introducing on CNTs because of the higher microhardness which can be attributed to better dispersion of less damaged CNTs. Compared with crystallite size changes, CNTs dispersion and damages were considerably more effective on hardness.展开更多
An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and...An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and grows in the interstice between fibers. The fibersurface cannot serve as site for the heterogeneous nucleation of a primary dendrite. There exists anincreasing Cu concentration gradient from the center of the interstice between fibers to theinterface or the grain boundaries. There are the eutectic phases around the fibers. The solutesegregation in the matrix increases with the cooling rate rising. The amount of eutectic phasesfollowed by imbalance crystalline can be numerically calculated with Clyne-Kurz formula.展开更多
Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for ...Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for coating CNTs was reported. The morphology of the fracture surfaces and worn surface were examined by SEM. The results show that Cu/coated-CNTs composites have higher hardness, much better wear resistance and (anti-)(friction) properties than those of the reference Cu alloy (Cu-10Sn) and Cu/uncoated-CNTs composite sintered under the same conditions. The optimal mechanical properties of the composites occurred at 2.25%(mass fraction) of CNTs. The excellent wear resistance and anti-friction properties are attributed to the fiber strengthening effect of CNTs and the effect of the spherical wear debris containing carbon nanotubes on the tribo-surface.展开更多
Multi-walled carbon nanotube(MWCNT)-reinforced copper composite was fabricated by a novel method,which involves solution phase synthesis of MWCNT-implanted cuprous oxide composite spheres,formation of MWCNT/ copper co...Multi-walled carbon nanotube(MWCNT)-reinforced copper composite was fabricated by a novel method,which involves solution phase synthesis of MWCNT-implanted cuprous oxide composite spheres,formation of MWCNT/ copper composite spheres after reduction in H2 atmosphere and preparation of the MWCNT/copper bulk with vacuum hot pressing. The SEM images of the fracture surfaces indicate that MWCNTs are homogeneously dispersed in the composite and bonded to the matrix. In addition,the thermal expansion of the composites with various MWCNT contents(0%,1% and 5%,mass fraction) were investigated. The coefficient of thermal expansion(CTE) decreases with increasing MWCNT content,which are all much lower than that of pure copper.展开更多
A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiti...A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.展开更多
Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to s...Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.展开更多
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst...Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred.展开更多
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Bulk Cu50Zr40Ti10 amorphous alloy composites reinforced with carbon nanotube (CNT) were successfully fabricated by hot pressing technique. Their density, thermal conductivity, and mechanical properties were systemically investigated. The density and the compression strength of the compacts both decrease with increasing CNT content. The thermal conductivity of the compacts decreases when the CNT content is less than 0.10% or exceeds 0.60% (mass fraction), while increases when the CNT content is in the range of 0.1%-0.6%. The strain limit and the modulus of the compacts are obviously improved when the CNT content is less than 1.0% and then decrease significantly when the CNT content exceeds 1.00%. The optimum CNT addition is less than 0.20% at the comprehensive properties point of view.
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.
基金Project(20111080980) supported by the Initiative Scientific Research Program,Tsinghua University,ChinaProject(2013AA031201) supported by the High Technology Research and Development Program of China
文摘The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
文摘Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.
基金supported by the National Natural Science Foundation of China (No.50971020) National High-Tech Research and Development Program of China (No.2008AA03Z505)
文摘Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification.
文摘Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.
基金Project(51464034) supported by the National Natural Science Foundation of ChinaProjects(GJJ151309,GJJ151010) supported by the Education Department of Jiangxi Province,China
文摘AZ91D alloy composites with1.0%CNTs have been fabricated by a method combined ball milling with stirring casting.The composite was investigated using optical microscopy(OM),X-ray diffraction(XRD),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM),transmission electron microscope(TEM)and room temperature(RT)tensile test.Theresults show that CNTs were homogeneously distributed in the matrix and maintained integrated structure.The yield strength andductility of AZ91D/CNTs composite were improved by47.2%and112.2%,respectively,when compared with the AZ91alloy.Theuniform distribution of CNTs and the strong interfacial bonds between CNT and the matrix are dominated to the simultaneousimprovement of yield strength and ductility of the composite.In addition,the grain refinement as well as the finerβphase(Mg17Al12)with homogenous distribution in the matrix can also slightly assist to the enhancement of the mechanical properties of thecomposite.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
基金the German Academic Exchange Service (DAAD) for providing a scholarship to Dr. Sinan Kandemir during his tenure at Helmholtz-Zentrum Hereon (HZH)
文摘In this study,the recycled short carbon fiber(CF)-reinforced magnesium matrix composites were fabricated using a combination of stir casting and hot extrusion.The objective was to investigate the impact of CF content(2.5 and 5.0 wt.%)and fiber length(100 and 500μm)on the microstructure,mechanical properties,and creep behavior of AZ91 alloy matrix.The microstructural analysis revealed that the CFs aligned in the extrusion direction resulted in grain and intermetallic refinement within the alloy.In comparison to the unreinforced AZ91 alloy,the composites with 2.5 wt.%CF exhibited an increase in hardness by 16-20%and yield strength by 5-15%,depending on the fiber length,while experiencing a reduction in ductility.When the reinforcement content was increased from 2.5 to 5.0 wt.%,strength values exhibited fluctuations and decline,accompanied by decreased ductility.These divergent outcomes were discussed in relation to fiber length,clustering tendency due to higher reinforcement content,and the presence of interfacial products with micro-cracks at the CF-matrix interface.Tensile creep tests indicated that CFs did not enhance the creep resistance of extruded AZ91 alloy,suggesting that grain boundary sliding is likely the dominant deformation mechanism during creep.
基金The project partially supported by National Natural Science Foundation of China (No. 10275069)
文摘An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.
基金The financial supports of this study by the Iran National Science Foundation (project No: 92013440)Iran Nanotechnology Initiative Council
文摘Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two different media on dispersion of CNTs, and preparation of the nano-composite. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy and transmission electron microscopy. Also, the mechanical properties were measured by microhardness test. The mean crystallite size was in the range of 20-63 nm depending on milling medium and energy. CNTs dispersion is a function of milling energy. According to FESEM images and microhardness results, it can be concluded that wet milling is more applicable in dispersing CNTs homogeneously in comparison to dry milling. It was also found that wet milling at higher milling energies can be a beneficial method of producing the homogeneous hybrid nano-composite with the least damages introducing on CNTs because of the higher microhardness which can be attributed to better dispersion of less damaged CNTs. Compared with crystallite size changes, CNTs dispersion and damages were considerably more effective on hardness.
文摘An Al_2O_(3f)/Al-4.5Cu composite was made by squeeze casting. The solutesegregation in the composite at different cooling rates was studied. The results indicate that theprimary crystal of Al-4.5Cu alloy nucleates and grows in the interstice between fibers. The fibersurface cannot serve as site for the heterogeneous nucleation of a primary dendrite. There exists anincreasing Cu concentration gradient from the center of the interstice between fibers to theinterface or the grain boundaries. There are the eutectic phases around the fibers. The solutesegregation in the matrix increases with the cooling rate rising. The amount of eutectic phasesfollowed by imbalance crystalline can be numerically calculated with Clyne-Kurz formula.
基金Projects(50372020 59972031) supported by the National Natural Science Foundation of China Project(01JJY2052)supported by Science Foundation of Hunan Province and Hunan University Research Foundation
文摘Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for coating CNTs was reported. The morphology of the fracture surfaces and worn surface were examined by SEM. The results show that Cu/coated-CNTs composites have higher hardness, much better wear resistance and (anti-)(friction) properties than those of the reference Cu alloy (Cu-10Sn) and Cu/uncoated-CNTs composite sintered under the same conditions. The optimal mechanical properties of the composites occurred at 2.25%(mass fraction) of CNTs. The excellent wear resistance and anti-friction properties are attributed to the fiber strengthening effect of CNTs and the effect of the spherical wear debris containing carbon nanotubes on the tribo-surface.
基金Projects (50772033 50372020) supported by the National Natural Science Foundation of China+1 种基金Project (01JJY2052) supported by the Science Foundation of Hunan Province, ChinaProject supported by Hunan University Research Foundation
文摘Multi-walled carbon nanotube(MWCNT)-reinforced copper composite was fabricated by a novel method,which involves solution phase synthesis of MWCNT-implanted cuprous oxide composite spheres,formation of MWCNT/ copper composite spheres after reduction in H2 atmosphere and preparation of the MWCNT/copper bulk with vacuum hot pressing. The SEM images of the fracture surfaces indicate that MWCNTs are homogeneously dispersed in the composite and bonded to the matrix. In addition,the thermal expansion of the composites with various MWCNT contents(0%,1% and 5%,mass fraction) were investigated. The coefficient of thermal expansion(CTE) decreases with increasing MWCNT content,which are all much lower than that of pure copper.
基金Key Technologies R&D Program of Tianjin (06YFGZGX02400)
文摘A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.
文摘Multi-wall carbon nanotubes (MWNTs) have high mechanical properties and are considered a kind of realistic reinforcement for polymers, ceramics and metals. The hot press sintering and squeeze casting were adopted to synthesize MWNTs reinforced aluminum composites. In hot press sintered MWNTs/Al composites, MWNTs agglomerates distribute along aluminum powders and have low bonding strength with aluminum. But MWNTs agglomerates distribute evenly in the squeeze cast MWNTs/Al composites. Some dispersed nanotubes bond well with aluminum matrix and few dislocations can be found in the nanotube areas, which implies little thermal residual stress in squeeze cast MWNTs/Al composites. This indicates that the strengthen mechanisms in nanometer sized MWNTs/Al composites may be different from that in micrometer sized whisker composites.
基金supported by the National Natural Science Foundation of China(Grant No.52074365)grateful to the Sichuan Science and Technology Program,China(Grant No.2022YFG0289)+2 种基金sponsored by the Funding Project of Key Laboratory of Sichuan Province for comprehensive Utilization of Vanadium and Titanium Resources,China(Grant No.2018FTSZ26)the Project Supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province,China(Grant Nos.2021CL26,GK202104,and GK202106)supported by the Ph.D.Programs Foundation of Sichuan University of Science and Engineering,China(Grant No.2021RC18).
文摘Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred.